ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling Interactive Transcription in an Indigenous Community

53   0   0.0 ( 0 )
 نشر من قبل Eric Le Ferrand
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel transcription workflow which combines spoken term detection and human-in-the-loop, together with a pilot experiment. This work is grounded in an almost zero-resource scenario where only a few terms have so far been identified, involving two endangered languages. We show that in the early stages of transcription, when the available data is insufficient to train a robust ASR system, it is possible to take advantage of the transcription of a small number of isolated words in order to bootstrap the transcription of a speech collection.

قيم البحث

اقرأ أيضاً

Despite the current diversity and inclusion initiatives in the academic community, researchers with a non-native command of English still face significant obstacles when writing papers in English. This paper presents the Langsmith editor, which assis ts inexperienced, non-native researchers to write English papers, especially in the natural language processing (NLP) field. Our system can suggest fluent, academic-style sentences to writers based on their rough, incomplete phrases or sentences. The system also encourages interaction between human writers and the computerized revision system. The experimental results demonstrated that Langsmith helps non-native English-speaker students write papers in English. The system is available at https://emnlp-demo.editor. langsmith.co.jp/.
Training agents to communicate with one another given task-based supervision only has attracted considerable attention recently, due to the growing interest in developing models for human-agent interaction. Prior work on the topic focused on simple e nvironments, where training using policy gradient was feasible despite the non-stationarity of the agents during training. In this paper, we present a more challenging environment for testing the emergence of communication from raw pixels, where training using policy gradient fails. We propose a new model and training algorithm, that utilizes the structure of a learned representation space to produce more consistent speakers at the initial phases of training, which stabilizes learning. We empirically show that our algorithm substantially improves performance compared to policy gradient. We also propose a new alignment-based metric for measuring context-independence in emerged communication and find our method increases context-independence compared to policy gradient and other competitive baselines.
Much of the recent literature on automatic speech recognition (ASR) is taking an end-to-end approach. Unlike English where the writing system is closely related to sound, Chinese characters (Hanzi) represent meaning, not sound. We propose factoring a udio -> Hanzi into two sub-tasks: (1) audio -> Pinyin and (2) Pinyin -> Hanzi, where Pinyin is a system of phonetic transcription of standard Chinese. Factoring the audio -> Hanzi task in this way achieves 3.9% CER (character error rate) on the Aishell-1 corpus, the best result reported on this dataset so far.
The conventional paradigm in speech translation starts with a speech recognition step to generate transcripts, followed by a translation step with the automatic transcripts as input. To address various shortcomings of this paradigm, recent work explo res end-to-end trainable direct models that translate without transcribing. However, transcripts can be an indispensable output in practical applications, which often display transcripts alongside the translations to users. We make this common requirement explicit and explore the task of jointly transcribing and translating speech. While high accuracy of transcript and translation are crucial, even highly accurate systems can suffer from inconsistencies between both outputs that degrade the user experience. We introduce a methodology to evaluate consistency and compare several modeling approaches, including the traditional cascaded approach and end-to-end models. We find that direct models are poorly suited to the joint transcription/translation task, but that end-to-end models that feature a coupled inference procedure are able to achieve strong consistency. We further introduce simple techniques for directly optimizing for consistency, and analyze the resulting trade-offs between consistency, transcription accuracy, and translation accuracy.
Recent work in automatic recognition of conversational telephone speech (CTS) has achieved accuracy levels comparable to human transcribers, although there is some debate how to precisely quantify human performance on this task, using the NIST 2000 C TS evaluation set. This raises the question what systematic differences, if any, may be found differentiating human from machine transcription errors. In this paper we approach this question by comparing the output of our most accurate CTS recognition system to that of a standard speech transcription vendor pipeline. We find that the most frequent substitution, deletion and insertion error types of both outputs show a high degree of overlap. The only notable exception is that the automatic recognizer tends to confuse filled pauses (uh) and backchannel acknowledgments (uhhuh). Humans tend not to make this error, presumably due to the distinctive and opposing pragmatic functions attached to these words. Furthermore, we quantify the correlation between human and machine errors at the speaker level, and investigate the effect of speaker overlap between training and test data. Finally, we report on an informal Turing test asking humans to discriminate between automatic and human transcription error cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا