ﻻ يوجد ملخص باللغة العربية
We study how impurities influence the current-induced dynamics of magnetic Skyrmions moving in a racetrack geometry. For this, we solve numerically the generalized Landau-Lifshitz-Gilbert equation extended by the current-induced spin transfer torque. In particular, we investigate two classes of impurities, non-conducting and magnetic impurities. The former are magnetically rigid objects and yield to an inhomogeneous current density over the racetrack which we determine separately by solving the fundamental electrostatic equations. In contrast, magnetic impurities leave the applied current density homogeneous throughout the stripe. Depending on parameters, we observe four different scenarios of Skyrmion motions in the presence of disorder, the Skyrmion decay, the pinning, the creation of additional Skyrmions, and ordinary Skyrmion passage. We calculate and discuss phase diagrams in dependence of the impurity concentration and radii of the impurities.
Magnetic skyrmions are emerging as key elements of unconventional operations having unique properties such as small size and low current manipulation. In particular, it is possible to design skyrmion-based neurons and synapses for neuromorphic comput
Magnetic skyrmions are nanoscale windings of the spin configuration that hold great promise for technology due to their topology-related properties and extremely reduced sizes. After the recent observation at room temperature of sub-100 nm skyrmions
Future spintronic devices based on skyrmions will require precise control of the skyrmion motion. We show that this goal can be achieved through the use of magnetic antidot arrays. With micromagnetic simulations and semi-analytical calculations based
Current-driven skyrmion motion in random granular films is investigated with interesting findings. For a given current, there exists a critical disorder strength below which its transverse motion could either be boosted below a critical damping or be
Twisted skyrmions, whose helicity angles are different from that of Bloch skyrmions and Neel skyrmions, have already been demonstrated in experiments recently. In this work, we first contrast the magnetic structure and origin of the twisted skyrmion