ترغب بنشر مسار تعليمي؟ اضغط هنا

The fate of planetesimals formed at planetary gap edges

139   0   0.0 ( 0 )
 نشر من قبل Linn Eriksson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of rings and gaps in protoplanetary discs are often ascribed to planet-disc interactions, where dust and pebbles are trapped at the edges of planetary induced gas gaps. Recent work has shown that these are likely sites for planetesimal formation via the streaming instability. Given the large amount of planetesimals that potentially form at gap edges, we address the question of their fate and ability to radially transport solids in protoplanetary discs. We perform a series of N-body simulations of planetesimal orbits, taking into account the effect of gas drag and mass loss via ablation. We consider two planetary systems: one akin to the young Solar System, and another one inspired by HL Tau. In both systems, the close proximity to the gap-opening planets results in large orbital excitations, causing the planetesimals to leave their birth locations and spread out across the disc soon after formation. Planetesimals that end up on eccentric orbits interior of 10au experience efficient ablation, and lose all mass before they reach the innermost disc region. In our nominal Solar System simulation with $dot{M}_0=10^{-7}, M_{odot}, textrm{yr}^{-1}$ and $alpha=10^{-2}$, we find that 70% of the initial planetesimal mass has been ablated after 500kyr. The ablation rate in HL Tau is lower, and only 11% of the initial planetesimal mass has been ablated after 1Myr. The ablated material consist of a mixture of solid grains and vaporized ices, where a large fraction of the vaporized ices re-condense to form solid ice. Assuming that the solids grow to pebbles in the disc midplane, this results in a pebble flux of $sim 10-100,M_{oplus}textrm{Myr}^{-1}$ through the inner disc. Our results demonstrate that scattered planetesimals can carry a significant flux of solids past planetary-induced gaps in young and massive protoplanetary discs.

قيم البحث

اقرأ أيضاً

The cold classical Kuiper belt objects have low inclinations and eccentricities and are the only Kuiper belt population suspected to have formed in situ. Compared with the dynamically excited populations, which exhibit a broad range of colours and a low binary fraction of ~10% cold classical Kuiper belt objects typically have red optical colours with ~30% of the population found in binary pairs; the origin of these differences remains unclear. We report the detection of a population of blue-coloured, tenuously bound binaries residing among the cold classical Kuiper belt objects. Here we show that widely separated binaries could have survived push-out into the cold classical region during the early phases of Neptunes migration. The blue binaries may be contaminants, originating at ~38 au, and could provide a unique probe of the formative conditions in a region now nearly devoid of objects. The idea that the blue objects, which are predominantly binary, are the products of push-out requires that the planetesimals formed entirely as multiples. Plausible formation routes include planetesimal formation via pebble accretion and subsequent binary production through dynamic friction and binary formation during the collapse of a cloud of solids.
A critical phase in the standard model for planet formation is the runaway growth phase. During runaway growth bodies in the 0.1--100 km size range (planetesimals) quickly produce a number of much larger seeds. The runaway growth phase is essential f or planet formation as the emergent planetary embryos can accrete the leftover planetesimals at large gravitational focusing factors. However, torques resulting from turbulence-induced density fluctuations may violate the criterion for the onset of runaway growth, which is that the magnitude of the planetesimals random (eccentric) motions are less than their escape velocity. This condition represents a more stringent constraint than the condition that planetesimals survive their mutual collisions. To investigate the effects of MRI turbulence on the viability of the runaway growth scenario, we apply our semi-analytical recipes of Paper I, which we augment by a coagulation/fragmentation model for the dust component. We find that the surface area-equivalent abundance of 0.1 micron particles is reduced by factors 10^2--10^3, which tends to render the dust irrelevant to the turbulence. We express the turbulent activity in the midplane regions in terms of a size s_run above which planetesimals will experience runaway growth. We find that s_run is mainly determined by the strength of the vertical net field that threads the disks and the disk radius. At disk radii beyond 5 AU, s_run becomes larger than ~100 km and the collision times among these bodies longer than the duration of the nebula phase. Our findings imply that the classical, planetesimal-dominated, model for planet formation is not viable in the outer regions of a turbulent disk.
Comets and small planetesimals are believed to contain primordial building blocks in the form of millimeter to centimeter sized pebbles. One of the viable growing mechanisms to form these small bodies is through the streaming instability (SI) in whic h pebbles cluster and gravitationally collapse towards a planetesimal or comet in the presence of gas drag. However, most SI simulations are global and lack the resolution to follow the final collapse stage of a pebble cloud within its Hill radius. We aim to track the collapse of a gravitationally bound pebble cloud subject to mutual collisions and gas drag with the representative particle approach. We determine the radial pebble size distribution of the collapsed core and the impact of mutual pebble collisions on the pebble size distribution. We find that virial equilibrium is never reached during the cloud evolution and that, in general, pebbles with given Stokes number (St) collapse towards an optically thick core in a sequence from aerodynamically largest to aerodynamically smallest. We show that at the location for which the core becomes optically thick, the terminal velocity is well below the fragmentation threshold velocity. While collisional processing is negligible during cloud evolution, the collisions that do occur are sticking. These results support the observations that comets and small planetary bodies are composed of primordial pebbles in the milimeter to centimeter size range
We perform a systematic study of the dynamics of dust particles in protoplanetary disks with embedded planets using global 2-D and 3-D inviscid hydrodynamic simulations. Lagrangian particles have been implemented into magnetohydrodynamic code Athena with cylindrical coordinates. We find two distinct outcomes depending on the mass of the embedded planet. In the presence of a low mass planet ($8 M_{oplus}$), two narrow gaps start to open in the gas on each side of the planet where the density waves shock. These shallow gaps can dramatically affect particle drift speed and cause significant, roughly axisymmetric dust depletion. On the other hand, a more massive planet ($>0.1 M_{J}$) carves out a deeper gap with sharp edges, which are unstable to the vortex formation. Particles with a wide range of sizes ($0.02<Omega t_{s}<20$) are trapped and settle to the midplane in the vortex, with the strongest concentration for particles with $Omega t_{s}sim 1$. The dust concentration is highly elongated in the $phi$ direction, and can be as wide as 4 disk scale heights in the radial direction. Dust surface density inside the vortex can be increased by more than a factor of 10$^2$ in a very non-axisymmetric fashion. For very big particles ($Omega t_{s}gg 1$) we find strong eccentricity excitation, in particular around the planet and in the vicinity of the mean motion resonances, facilitating gap opening there. Our results imply that in weakly turbulent protoplanetary disk regions (e.g. the dead zone) dust particles with a very wide range of sizes can be trapped at gap edges and inside vortices induced by planets with $M_{p}<M_{J}$, potentially accelerating planetesimal and planet formation there, and giving rise to distinctive features that can be probed by ALMA and EVLA.
174 - Zs. Regaly , A. Juhasz , D. Nehez 2017
Recent sub-millimeter observations show non-axisymmetric brightness distributions with a horseshoe-like morphology for more than a dozen transition disks. The most accepted explanation for the observed asymmetries is the accumulation of dust in large -scale vortices. Protoplanetary disks vortices can form by the excitation of Rossby-wave instability in the vicinity of a steep pressure gradient, which can develop at the edges of a giant planet carved gap or at the edges of an accretionally inactive zone. We studied the formation and evolution of vortices formed in these two distinct scenarios by means of two-dimensional locally isothermal hydrodynamic simulations. We found that the vortex formed at the edge of a planetary gap is short-lived, unless the disk is nearly inviscid. In contrast, the vortex formed at the outer edge of a dead zone is long-lived. The vortex morphology can be significantly different in the two scenarios: the vortex radial and azimuthal extensions are ~1.5 and ~3.5 times larger for the dead zone edge compared to gap models. In some particular cases, the vortex aspect ratios can be similar in the two scenarios, however, the vortex azimuthal extensions can be used to distinguish the vortex formation mechanisms. We calculate predictions for vortex observability in the sub-millimeter continuum with ALMA. We found that the azimuthal and radial extent of brightness asymmetry correlates with vortex formation process, within the limitations of alpha-viscosity prescription.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا