ﻻ يوجد ملخص باللغة العربية
The cold classical Kuiper belt objects have low inclinations and eccentricities and are the only Kuiper belt population suspected to have formed in situ. Compared with the dynamically excited populations, which exhibit a broad range of colours and a low binary fraction of ~10% cold classical Kuiper belt objects typically have red optical colours with ~30% of the population found in binary pairs; the origin of these differences remains unclear. We report the detection of a population of blue-coloured, tenuously bound binaries residing among the cold classical Kuiper belt objects. Here we show that widely separated binaries could have survived push-out into the cold classical region during the early phases of Neptunes migration. The blue binaries may be contaminants, originating at ~38 au, and could provide a unique probe of the formative conditions in a region now nearly devoid of objects. The idea that the blue objects, which are predominantly binary, are the products of push-out requires that the planetesimals formed entirely as multiples. Plausible formation routes include planetesimal formation via pebble accretion and subsequent binary production through dynamic friction and binary formation during the collapse of a cloud of solids.
The surface characterization of Trans-Neptunian Binaries (TNBs) is key to understanding the properties of the disk of planetesimals from which these objects formed. In the optical wavelengths, it has been demonstrated that most equal-sized component
Here we present observations of 7 large Kuiper Belt Objects. From these observations, we extract a point source catalog with $sim0.01$ precision, and astrometry of our target Kuiper Belt Objects with $0.04-0.08$ precision within that catalog. We have
Here we report WFPC2 observations of the Quaoar-Weywot Kuiper belt binary. From these observations we find that Weywot is on an elliptical orbit with eccentricity of 0.14 {pm} 0.04, period of 12.438 {pm} 0.005 days, and a semi-major axis of 1.45 {pm}
The central objective of the New Horizons prime mission was to make the first exploration of Pluto and its system of moons. Following that, New Horizons has been approved for its first extended mission, which has the objectives of extensively studyin
Here, we present results on the intrinsic collision probabilities, $ P_I$, and range of collision speeds, $V_I$, as a function of the heliocentric distance, $r$, in the trans-Neptunian region. The collision speed is one of the parameters, that serves