ﻻ يوجد ملخص باللغة العربية
This paper describes the Jas4pp framework for exploring physics cases and for detector-performance studies of future particle collision experiments. Jas4pp is a multi-platform Java program for numeric calculations, scientific visualization in 2D and 3D, storing data in various file formats and displaying collision events and detector geometries. It also includes complex data-analysis algorithms for function minimisation, regression analysis, event reconstruction (such as jet reconstruction), limit settings and other libraries widely used in particle physics. The framework can be used with several scripting languages, such as Python/Jython, Groovy and JShell. Several benchmark tests discussed in the paper illustrate significant improvements in the performance of the Groovy and JShell scripting languages compared to the standard Python implementation in C. The improvements for numeric computations in Java are attributed to recent enhancements in the Java Virtual Machine.
The REST-for-Physics (Rare Event Searches Toolkit for Physics) framework is a ROOT-based solution providing the means to process and analyze experimental or Monte Carlo event data. Special care has been taken on the traceability of the code and the v
Computational physics problems often have a common set of aspects to them that any particular numerical code will have to address. Because these aspects are common to many problems, having a framework already designed and ready to use will not only s
GELATIO is a new software framework for advanced data analysis and digital signal processing developed for the GERDA neutrinoless double beta decay experiment. The framework is tailored to handle the full analysis flow of signals recorded by high pur
The science potential of a 10 kiloton deep-ocean liquid scintillation detector for ~1 MeV energy scale electron anti-neutrinos has been studied. Such an instrument, designed to be portable and function in the deep ocean (3-5 km) can make unique measu
Gravitational wave detector technology provides high-precision measurement apparatuses that, if combined with a modulated particle source, have the potential to measure and constrain particle interactions in a novel way, by measuring the pressure cau