ترغب بنشر مسار تعليمي؟ اضغط هنا

REST-for-Physics, a ROOT-based framework for event oriented data analysis and combined Monte Carlo response

126   0   0.0 ( 0 )
 نشر من قبل Javier Galan Lacarra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The REST-for-Physics (Rare Event Searches Toolkit for Physics) framework is a ROOT-based solution providing the means to process and analyze experimental or Monte Carlo event data. Special care has been taken on the traceability of the code and the validation of the results produced within the framework, together with the connectivity between code and data stored registered through specific version metadata members. The framework development was originally motivated to cover the needs at Rare Event Searches experiments (experiments looking for phenomena having extremely low occurrence probability like dark matter or neutrino interactions or rare nuclear decays), and its components naturally implement tools to address the challenges in these kinds of experiments; the integration of a detector physics response, the implementation of signal processing routines, or topological algorithms for physical event identification are some examples. Despite this specialization, the framework was conceived thinking in scalability, and other event-oriented applications could benefit from the data processing routines and/or metadata description implemented in REST, being the generic framework tools completely decoupled from dedicated libraries. REST-for-Physics is a consolidated piece of software already serving the needs of different physics experiments - using gaseous Time Projection Chambers (TPCs) as detection technology - for background data analysis and detector characterization, as well as generic detector R&D. Even though REST has been exploited mainly with gaseous TPCs, the code could be easily applied or adapted to other detection technologies. We present in this work an overview of REST-for-Physics, providing a broad perspective to the infrastructure and organization of the project as a whole. The framework and its different components will be described in the text.



قيم البحث

اقرأ أيضاً

139 - M. Augelli 2010
The role of data libraries as a collaborative tool across Monte Carlo codes is discussed. Some new contributions in this domain are presented; they concern a data library of proton and alpha ionization cross sections, the development in progress of a data library of electron ionization cross sections and proposed improvements to the EADL (Evaluated Atomic Data Library), the latter resulting from an extensive data validation process.
Several total and partial photoionization cross section calculations, based on both theoretical and empirical approaches, are quantitatively evaluated with statistical analyses using a large collection of experimental data retrieved from the literatu re to identify the state of the art for modeling the photoelectric effect in Monte Carlo particle transport. Some of the examined cross section models are available in general purpose Monte Carlo systems, while others have been implemented and subjected to validation tests for the first time to estimate whether they could improve the accuracy of particle transport codes. The validation process identifies Scofields 1973 non-relativistic calculations, tabulated in the Evaluated Photon Data Library(EPDL), as the one best reproducing experimental measurements of total cross sections. Specialized total cross section models, some of which derive from more recent calculations, do not provide significant improvements. Scofields non-relativistic calculations are not surpassed regarding the compatibility with experiment of K and L shell photoionization cross sections either, although in a few test cases Ebels parameterization produces more accurate results close to absorption edges. Modifications to Biggs and Lighthills parameterization implemented in Geant4 significantly reduce the accuracy of total cross sections at low energies with respect to its original formulation. The scarcity of suitable experimental data hinders a similar extensive analysis for the simulation of the photoelectron angular distribution, which is limited to a qualitative appraisal.
This paper describes the Jas4pp framework for exploring physics cases and for detector-performance studies of future particle collision experiments. Jas4pp is a multi-platform Java program for numeric calculations, scientific visualization in 2D and 3D, storing data in various file formats and displaying collision events and detector geometries. It also includes complex data-analysis algorithms for function minimisation, regression analysis, event reconstruction (such as jet reconstruction), limit settings and other libraries widely used in particle physics. The framework can be used with several scripting languages, such as Python/Jython, Groovy and JShell. Several benchmark tests discussed in the paper illustrate significant improvements in the performance of the Groovy and JShell scripting languages compared to the standard Python implementation in C. The improvements for numeric computations in Java are attributed to recent enhancements in the Java Virtual Machine.
We present a new Monte Carlo Markov Chain algorithm for CMB analysis in the low signal-to-noise regime. This method builds on and complements the previously described CMB Gibbs sampler, and effectively solves the low signal-to-noise inefficiency prob lem of the direct Gibbs sampler. The new algorithm is a simple Metropolis-Hastings sampler with a general proposal rule for the power spectrum, C_l, followed by a particular deterministic rescaling operation of the sky signal. The acceptance probability for this joint move depends on the sky map only through the difference of chi-squared between the original and proposed sky sample, which is close to unity in the low signal-to-noise regime. The algorithm is completed by alternating this move with a standard Gibbs move. Together, these two proposals constitute a computationally efficient algorithm for mapping out the full joint CMB posterior, both in the high and low signal-to-noise regimes.
The bifurcation method is a way to do rare event sampling -- to estimate the probability of events that are too rare to be found by direct simulation. We describe the bifurcation method and use it to estimate the transition rate of a double well pote ntial problem. We show that the associated constrained path sampling problem can be addressed by a combination of Crooks-Chandler sampling and parallel tempering and marginalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا