ترغب بنشر مسار تعليمي؟ اضغط هنا

Stage-wise Channel Pruning for Model Compression

241   0   0.0 ( 0 )
 نشر من قبل Mingyang Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Auto-ML pruning methods aim at searching a pruning strategy automatically to reduce the computational complexity of deep Convolutional Neural Networks(deep CNNs). However, some previous works found that the results of many Auto-ML pruning methods even cannot surpass the results of the uniformly pruning method. In this paper, we first analyze the reason for the ineffectiveness of Auto-ML pruning. Subsequently, a stage-wise pruning(SP) method is proposed to solve the above problem. As with most of the previous Auto-ML pruning methods, SP also trains a super-net that can provide proxy performance for sub-nets and search the best sub-net who has the best proxy performance. Different from previous works, we split a deep CNN into several stages and use a full-net where all layers are not pruned to supervise the training and the searching of sub-nets. Remarkably, the proxy performance of sub-nets trained with SP is closer to the actual performance than most of the previous Auto-ML pruning works. Therefore, SP achieves the state-of-the-art on both CIFAR-10 and ImageNet under the mobile setting.



قيم البحث

اقرأ أيضاً

Previous AutoML pruning works utilized individual layer features to automatically prune filters. We analyze the correlation for two layers from different blocks which have a short-cut structure. It is found that, in one block, the deeper layer has ma ny redundant filters which can be represented by filters in the former layer so that it is necessary to take information from other layers into consideration in pruning. In this paper, a graph pruning approach is proposed, which views any deep model as a topology graph. Graph PruningNet based on the graph convolution network is designed to automatically extract neighboring information for each node. To extract features from various topologies, Graph PruningNet is connected with Pruned Network by an individual fully connection layer for each node and jointly trained on a training dataset from scratch. Thus, we can obtain reasonable weights for any size of sub-network. We then search the best configuration of the Pruned Network by reinforcement learning. Different from previous work, we take the node features from well-trained Graph PruningNet, instead of the hand-craft features, as the states in reinforcement learning. Compared with other AutoML pruning works, our method has achieved the state-of-the-art under same conditions on ImageNet-2012. The code will be released on GitHub.
In recent years, deep neural networks have achieved great success in the field of computer vision. However, it is still a big challenge to deploy these deep models on resource-constrained embedded devices such as mobile robots, smart phones and so on . Therefore, network compression for such platforms is a reasonable solution to reduce memory consumption and computation complexity. In this paper, a novel channel pruning method based on genetic algorithm is proposed to compress very deep Convolution Neural Networks (CNNs). Firstly, a pre-trained CNN model is pruned layer by layer according to the sensitivity of each layer. After that, the pruned model is fine-tuned based on knowledge distillation framework. These two improvements significantly decrease the model redundancy with less accuracy drop. Channel selection is a combinatorial optimization problem that has exponential solution space. In order to accelerate the selection process, the proposed method formulates it as a search problem, which can be solved efficiently by genetic algorithm. Meanwhile, a two-step approximation fitness function is designed to further improve the efficiency of genetic process. The proposed method has been verified on three benchmark datasets with two popular CNN models: VGGNet and ResNet. On the CIFAR-100 and ImageNet datasets, our approach outperforms several state-of-the-art methods. On the CIFAR-10 and SVHN datasets, the pruned VGGNet achieves better performance than the original model with 8 times parameters compression and 3 times FLOPs reduction.
178 - Jingfei Chang , Yang Lu , Ping Xue 2020
To apply deep CNNs to mobile terminals and portable devices, many scholars have recently worked on the compressing and accelerating deep convolutional neural networks. Based on this, we propose a novel uniform channel pruning (UCP) method to prune de ep CNN, and the modified squeeze-and-excitation blocks (MSEB) is used to measure the importance of the channels in the convolutional layers. The unimportant channels, including convolutional kernels related to them, are pruned directly, which greatly reduces the storage cost and the number of calculations. There are two types of residual blocks in ResNet. For ResNet with bottlenecks, we use the pruning method with traditional CNN to trim the 3x3 convolutional layer in the middle of the blocks. For ResNet with basic residual blocks, we propose an approach to consistently prune all residual blocks in the same stage to ensure that the compact network structure is dimensionally correct. Considering that the network loses considerable information after pruning and that the larger the pruning amplitude is, the more information that will be lost, we do not choose fine-tuning but retrain from scratch to restore the accuracy of the network after pruning. Finally, we verified our method on CIFAR-10, CIFAR-100 and ILSVRC-2012 for image classification. The results indicate that the performance of the compact network after retraining from scratch, when the pruning rate is small, is better than the original network. Even when the pruning amplitude is large, the accuracy can be maintained or decreased slightly. On the CIFAR-100, when reducing the parameters and FLOPs up to 82% and 62% respectively, the accuracy of VGG-19 even improved by 0.54% after retraining.
In the traditional deep compression framework, iteratively performing network pruning and quantization can reduce the model size and computation cost to meet the deployment requirements. However, such a step-wise application of pruning and quantizati on may lead to suboptimal solutions and unnecessary time consumption. In this paper, we tackle this issue by integrating network pruning and quantization as a unified joint compression problem and then use AutoML to automatically solve it. We find the pruning process can be regarded as the channel-wise quantization with 0 bit. Thus, the separate two-step pruning and quantization can be simplified as the one-step quantization with mixed precision. This unification not only simplifies the compression pipeline but also avoids the compression divergence. To implement this idea, we propose the automated model compression by jointly applied pruning and quantization (AJPQ). AJPQ is designed with a hierarchical architecture: the layer controller controls the layer sparsity, and the channel controller decides the bit-width for each kernel. Following the same importance criterion, the layer controller and the channel controller collaboratively decide the compression strategy. With the help of reinforcement learning, our one-step compression is automatically achieved. Compared with the state-of-the-art automated compression methods, our method obtains a better accuracy while reducing the storage considerably. For fixed precision quantization, AJPQ can reduce more than five times model size and two times computation with a slight performance increase for Skynet in remote sensing object detection. When mixed-precision is allowed, AJPQ can reduce five times model size with only 1.06% top-5 accuracy decline for MobileNet in the classification task.
Network compression has been widely studied since it is able to reduce the memory and computation cost during inference. However, previous methods seldom deal with complicated structures like residual connections, group/depth-wise convolution and fea ture pyramid network, where channels of multiple layers are coupled and need to be pruned simultaneously. In this paper, we present a general channel pruning approach that can be applied to various complicated structures. Particularly, we propose a layer grouping algorithm to find coupled channels automatically. Then we derive a unified metric based on Fisher information to evaluate the importance of a single channel and coupled channels. Moreover, we find that inference speedup on GPUs is more correlated with the reduction of memory rather than FLOPs, and thus we employ the memory reduction of each channel to normalize the importance. Our method can be used to prune any structures including those with coupled channels. We conduct extensive experiments on various backbones, including the classic ResNet and ResNeXt, mobile-friendly MobileNetV2, and the NAS-based RegNet, both on image classification and object detection which is under-explored. Experimental results validate that our method can effectively prune sophisticated networks, boosting inference speed without sacrificing accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا