ﻻ يوجد ملخص باللغة العربية
How stellar mass assembles within galaxies is still an open question. We present measurements of the stellar mass distribution on kpc-scale for $sim5500$ galaxies with stellar masses above $log(M_{ast}/M_{odot})geqslant9.8$ up to the redshift $2.0$. We create stellar mass maps from Hubble Space Telescope observations by means of the pixel-by-pixel SED fitting method. These maps are used to derive radii encompassing $20%$, $50%$, and $80%$ ($r_{20}$, $r_{50}$ and $r_{80}$) of the total stellar mass from the best-fit Sersic models. The reliability and limitations of the structural parameter measurements are checked extensively using a large sample ($sim3000$) of simulated galaxies. The size-mass relations and redshift evolution of $r_{20}$, $r_{50}$ and $r_{80}$ are explored for star-forming and quiescent galaxies. At fixed mass, the star-forming galaxies do not show significant changes in their $r_{20}$, $r_{50}$ and $r_{80}$ sizes, indicating self-similar growth. Only above the pivot stellar mass of $log(M_{ast}/M_{odot})simeq10.5$, $r_{80}$ evolves as $r_{80}propto(1+z)^{-0.85pm0.20}$, indicating that mass builds up in the outskirts of these systems (inside-out growth). The Sersic values also increase for the massive star-forming galaxies towards late cosmic time. Massive quiescent galaxies show stronger size evolution at all radii, in particular the $r_{20}$ sizes. For these massive galaxies, Sersic values remain almost constant since at least $zsim1.3$, indicating that the strong size evolution is related to the changes in the outer parts of these galaxies. We make all the structural parameters publicly available.
We study the history from $zsim2$ to $zsim0$ of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOO
Using observations from the FourStar Galaxy Evolution Survey (ZFOURGE), we obtain the deepest measurements to date of the galaxy stellar mass function at 0.5 < z < 2.5. ZFOURGE provides well-constrained photometric redshifts made possible through dee
Spectroscopic + photometric redshifts, stellar mass estimates, and rest-frame colors from the 3D-HST survey are combined with structural parameter measurements from CANDELS imaging to determine the galaxy size-mass distribution over the redshift rang
We examine the role of environment on the in situ star formation (SF) hosted by the progenitors of the most massive galaxies in the present-day universe, the brightest cluster galaxies (BCGs), from $z sim 3$ to present in the COSMOS field. Progenitor
The growth of galaxies is a key problem in understanding the structure and evolution of the universe. Galaxies grow their stellar mass by a combination of star formation and mergers, with a relative importance that is redshift dependent. Theoretical