ترغب بنشر مسار تعليمي؟ اضغط هنا

Connection Between Stellar Mass Distributions Within Galaxies and Quenching Since z =2

64   0   0.0 ( 0 )
 نشر من قبل Moein Mosleh
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the history from $zsim2$ to $zsim0$ of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOODS fields and the Sloan Digital Sky Survey (SDSS) for the local population. We present the radial stellar mass surface density profiles of galaxies with $M_{ast}>10^{10} M_{odot}$, corrected for mass-to-light ratio ($M_{ast}/L$) variations, and derive the half-mass radius ($R_{m}$), central stellar mass surface density within 1 kpc ($Sigma_{1}$) and surface density at $R_{m}$ ($Sigma_{m}$) for star-forming and quiescent galaxies and study their evolution with redshift. At fixed stellar mass, the half-mass sizes of quiescent galaxies increase from $zsim2$ to $zsim0$ by a factor of $sim3-5$, whereas the half-mass sizes of star-forming galaxies increase only slightly, by a factor of $sim2$. The central densities $Sigma_{1}$ of quiescent galaxies decline slightly (by a factor of $lesssim1.7$) from $zsim2$ to $zsim0$, while for star-forming galaxies $Sigma_{1}$ increases with time, at fixed mass. We show that the central density $Sigma_{1}$ has a tighter correlation with specific star-formation rate (sSFR) than $Sigma_{m}$ and for all masses and redshifts galaxies with higher central density are more prone to be quenched. Reaching a high central density ($Sigma_{1} gtrsim 10^{10} M_{odot} mathrm{kpc}^2$) seems to be a prerequisite for the cessation of star formation, though a causal link between high $Sigma_{1}$ and quenching is difficult to prove and their correlation can have a different origin.



قيم البحث

اقرأ أيضاً

How stellar mass assembles within galaxies is still an open question. We present measurements of the stellar mass distribution on kpc-scale for $sim5500$ galaxies with stellar masses above $log(M_{ast}/M_{odot})geqslant9.8$ up to the redshift $2.0$. We create stellar mass maps from Hubble Space Telescope observations by means of the pixel-by-pixel SED fitting method. These maps are used to derive radii encompassing $20%$, $50%$, and $80%$ ($r_{20}$, $r_{50}$ and $r_{80}$) of the total stellar mass from the best-fit Sersic models. The reliability and limitations of the structural parameter measurements are checked extensively using a large sample ($sim3000$) of simulated galaxies. The size-mass relations and redshift evolution of $r_{20}$, $r_{50}$ and $r_{80}$ are explored for star-forming and quiescent galaxies. At fixed mass, the star-forming galaxies do not show significant changes in their $r_{20}$, $r_{50}$ and $r_{80}$ sizes, indicating self-similar growth. Only above the pivot stellar mass of $log(M_{ast}/M_{odot})simeq10.5$, $r_{80}$ evolves as $r_{80}propto(1+z)^{-0.85pm0.20}$, indicating that mass builds up in the outskirts of these systems (inside-out growth). The Sersic values also increase for the massive star-forming galaxies towards late cosmic time. Massive quiescent galaxies show stronger size evolution at all radii, in particular the $r_{20}$ sizes. For these massive galaxies, Sersic values remain almost constant since at least $zsim1.3$, indicating that the strong size evolution is related to the changes in the outer parts of these galaxies. We make all the structural parameters publicly available.
The growth of galaxies is a key problem in understanding the structure and evolution of the universe. Galaxies grow their stellar mass by a combination of star formation and mergers, with a relative importance that is redshift dependent. Theoretical models predict quantitatively different contributions from the two channels; measuring these from the data is a crucial constraint. Exploiting the UltraVISTA catalog and a unique sample of progenitors of local ultra massive galaxies selected with an abundance matching approach, we quantify the role of the two mechanisms from z=2 to 0. We also compare our results to two independent incarnations of semi-analytic models. At all redshifts, progenitors are found in a variety of environments, ranging from being isolated to having 5-10 companions with mass ratio at least 1:10 within a projected radius of 500 kpc. In models, progenitors have a systematically larger number of companions, entailing a larger mass growth for mergers than in observations, at all redshifts. Generally, in both observations and models, the inferred and the expected mass growth roughly agree, within the uncertainties. Overall, our analysis confirms the model predictions, showing how the growth history of massive galaxies is dominated by in situ star formation at z~2, both star-formation and mergers at 1<z<2, and by mergers alone at z<1. Nonetheless, detailed comparisons still point out to tensions between the expected mass growth and our results, which might be due to either an incorrect progenitors-descendants selection, uncertainties on star formation rate and mass estimates, or the adopted assumptions on merger rates.
108 - Y. Zhang , C. Miller , T. Mckay 2015
Using the science verification data of the Dark Energy Survey (DES) for a new sample of 106 X-Ray selected clusters and groups, we study the stellar mass growth of Bright Central Galaxies (BCGs) since redshift 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation, $m_{*}propto(frac{M_{200}}{1.5times 10^{14}M_{odot}})^{0.24pm 0.08}(1+z)^{-0.19pm0.34}$, and compare the observed relation to the model prediction. We estimate the average growth rate since $z = 1.0$ for BCGs hosted by clusters of $M_{200, z}=10^{13.8}M_{odot}$, at $z=1.0$: $m_{*, BCG}$ appears to have grown by $0.13pm0.11$ dex, in tension at $sim 2.5 sigma$ significance level with the $0.40$ dex growth rate expected from the semi-analytic model. We show that the buildup of extended intra-cluster light after $z=1.0$ may alleviate this tension in BCG growth rates.
We investigate the relationship between the black hole accretion rate (BHAR) and star-formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 - 2.5. We source galaxies from the Ks-band selected ZFOURGE survey, which includes multi-wavelenth data spanning 0.3 - 160um. We use decomposition software to split the observed SEDs of our galaxies into their active galactic nuclei (AGN) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison to BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find as the progenit- ors evolve, their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 +/- 0.11, while the M31-mass progenitors are 0.39 +/- 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star-formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).
We highlight two research strands related to our ongoing chemodynamical Galactic Archaeology efforts: (i) the spatio-temporal infall rate of gas onto the disk, drawing analogies with the infall behaviour imposed by classical galactic chemical evoluti on models of inside-out disk growth; (ii) the radial age gradient predicted by spectrophometric models of disk galaxies. In relation to (i), at low-redshift, we find that half of the infall onto the disk is gas associated with the corona, while half can be associated with cooler gas streams; we also find that gas enters the disk preferentially orthogonal to the system, rather than in-plane. In relation to (ii), we recover age gradient troughs/inflections consistent with those observed in nature, without recourse to radial migrations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا