ترغب بنشر مسار تعليمي؟ اضغط هنا

STOI-Net: A Deep Learning based Non-Intrusive Speech Intelligibility Assessment Model

335   0   0.0 ( 0 )
 نشر من قبل Ryandhimas Zezario
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The calculation of most objective speech intelligibility assessment metrics requires clean speech as a reference. Such a requirement may limit the applicability of these metrics in real-world scenarios. To overcome this limitation, we propose a deep learning-based non-intrusive speech intelligibility assessment model, namely STOI-Net. The input and output of STOI-Net are speech spectral features and predicted STOI scores, respectively. The model is formed by the combination of a convolutional neural network and bidirectional long short-term memory (CNN-BLSTM) architecture with a multiplicative attention mechanism. Experimental results show that the STOI score estimated by STOI-Net has a good correlation with the actual STOI score when tested with noisy and enhanced speech utterances. The correlation values are 0.97 and 0.83, respectively, for the seen test condition (the test speakers and noise types are involved in the training set) and the unseen test condition (the test speakers and noise types are not involved in the training set). The results confirm the capability of STOI-Net to accurately predict the STOI scores without referring to clean speech.



قيم البحث

اقرأ أيضاً

Nowadays, most of the objective speech quality assessment tools (e.g., perceptual evaluation of speech quality (PESQ)) are based on the comparison of the degraded/processed speech with its clean counterpart. The need of a golden reference considerabl y restricts the practicality of such assessment tools in real-world scenarios since the clean reference usually cannot be accessed. On the other hand, human beings can readily evaluate the speech quality without any reference (e.g., mean opinion score (MOS) tests), implying the existence of an objective and non-intrusive (no clean reference needed) quality assessment mechanism. In this study, we propose a novel end-to-end, non-intrusive speech quality evaluation model, termed Quality-Net, based on bidirectional long short-term memory. The evaluation of utterance-level quality in Quality-Net is based on the frame-level assessment. Frame constraints and sensible initializations of forget gate biases are applied to learn meaningful frame-level quality assessment from the utterance-level quality label. Experimental results show that Quality-Net can yield high correlation to PESQ (0.9 for the noisy speech and 0.84 for the speech processed by speech enhancement). We believe that Quality-Net has potential to be used in a wide variety of applications of speech signal processing.
Utilizing a human-perception-related objective function to train a speech enhancement model has become a popular topic recently. The main reason is that the conventional mean squared error (MSE) loss cannot represent auditory perception well. One of the typical hu-man-perception-related metrics, which is the perceptual evaluation of speech quality (PESQ), has been proven to provide a high correlation to the quality scores rated by humans. Owing to its complex and non-differentiable properties, however, the PESQ function may not be used to optimize speech enhancement models directly. In this study, we propose optimizing the enhancement model with an approximated PESQ function, which is differentiable and learned from the training data. The experimental results show that the learned surrogate function can guide the enhancement model to further boost the PESQ score (in-crease of 0.18 points compared to the results trained with MSE loss) and maintain the speech intelligibility.
Deep clustering (DC) and utterance-level permutation invariant training (uPIT) have been demonstrated promising for speaker-independent speech separation. DC is usually formulated as two-step processes: embedding learning and embedding clustering, wh ich results in complex separation pipelines and a huge obstacle in directly optimizing the actual separation objectives. As for uPIT, it only minimizes the chosen permutation with the lowest mean square error, doesnt discriminate it with other permutations. In this paper, we propose a discriminative learning method for speaker-independent speech separation using deep embedding features. Firstly, a DC network is trained to extract deep embedding features, which contain each sources information and have an advantage in discriminating each target speakers. Then these features are used as the input for uPIT to directly separate the different sources. Finally, uPIT and DC are jointly trained, which directly optimizes the actual separation objectives. Moreover, in order to maximize the distance of each permutation, the discriminative learning is applied to fine tuning the whole model. Our experiments are conducted on WSJ0-2mix dataset. Experimental results show that the proposed models achieve better performances than DC and uPIT for speaker-independent speech separation.
As the cornerstone of other important technologies, such as speech recognition and speech synthesis, speech enhancement is a critical area in audio signal processing. In this paper, a new deep learning structure for speech enhancement is demonstrated . The model introduces a full attention mechanism to a bidirectional sequence-to-sequence method to make use of latent information after each focal frame. This is an extension of the previous attention-based RNN method. The proposed bidirectional attention-based architecture achieves better performance in terms of speech quality (PESQ), compared with OM-LSA, CNN-LSTM, T-GSA and the unidirectional attention-based LSTM baseline.
Recurrent neural networks (RNNs) have shown significant improvements in recent years for speech enhancement. However, the model complexity and inference time cost of RNNs are much higher than deep feed-forward neural networks (DNNs). Therefore, these limit the applications of speech enhancement. This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning. The TDNN has excellent potential for capturing long range temporal contexts, which utilizes a modular and incremental design. Besides, the TDNN preserves the feed-forward structure so that its inference cost is comparable to standard DNN. To make full use of the training data, we propose a full data learning method for speech enhancement. More specifically, we not only use the noisy-to-clean (input-to-target) to train the enhanced model, but also the clean-to-clean and noise-to-silence data. Therefore, all of the training data can be used to train the enhanced model. Our experiments are conducted on TIMIT dataset. Experimental results show that our proposed method could achieve a better performance than DNN and comparable even better performance than BLSTM. Meanwhile, compared with the BLSTM, the proposed method drastically reduce the inference time.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا