ﻻ يوجد ملخص باللغة العربية
As Gaussian processes are used to answer increasingly complex questions, analytic solutions become scarcer and scarcer. Monte Carlo methods act as a convenient bridge for connecting intractable mathematical expressions with actionable estimates via sampling. Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations. This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector. These methods are prohibitively expensive in cases where we would, ideally, like to draw high-dimensional vectors or even continuous sample paths. In this work, we investigate a different line of reasoning: rather than focusing on distributions, we articulate Gaussian conditionals at the level of random variables. We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors. Starting from first principles, we derive these methods and analyze the approximation errors they introduce. We, then, ground these results by exploring the practical implications of pathwise conditioning in various applied settings, such as global optimization and reinforcement learning.
We investigate the connections between sparse approximation methods for making kernel methods and Gaussian processes (GPs) scalable to massive data, focusing on the Nystrom method and the Sparse Variational Gaussian Processes (SVGP). While sparse app
Gaussian process models are flexible, Bayesian non-parametric approaches to regression. Properties of multivariate Gaussians mean that they can be combined linearly in the manner of additive models and via a link function (like in generalized linear
We present a practical way of introducing convolutional structure into Gaussian processes, making them more suited to high-dimensional inputs like images. The main contribution of our work is the construction of an inter-domain inducing point approxi
Gaussian processes (GPs) are nonparametric Bayesian models that have been applied to regression and classification problems. One of the approaches to alleviate their cubic training cost is the use of local GP experts trained on subsets of the data. I
We propose a semismooth Newton algorithm for pathwise optimization (SNAP) for the LASSO and Enet in sparse, high-dimensional linear regression. SNAP is derived from a suitable formulation of the KKT conditions based on Newton derivatives. It solves t