ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-temporal small area surveillance of the Covid-19 pandemics

394   0   0.0 ( 0 )
 نشر من قبل Miguel A. Martinez-Beneito
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergence of Covid-19 requires new effective tools for epidemiological surveillance. Spatio-temporal disease mapping models, which allow dealing with highly disaggregated spatial and temporal units of analysis, are a priority in this sense. Spatio-temporal models provide a geographically detailed and temporally updated overview of the current state of the pandemics, making public health interventions to be more effective. Moreover, the use of spatio-temporal disease mapping models in the new Covid-19 epidemic context, facilitates estimating newly demanded epidemiological indicators, such as the instantaneous reproduction number (R_t), even for small areas. This, in turn, allows to adapt traditional disease mapping models to these new circumstancies and make their results more useful in this particular context. In this paper we propose a new spatio-temporal disease mapping model, particularly suited to Covid-19 surveillance. As an additional result, we derive instantaneous reproduction number estimates for small areas, enabling monitoring this parameter with a high spatial disaggregation. We illustrate the use of our proposal with the separate study of the disease pandemics in two Spanish regions. As a result, we illustrate how touristic flows could haved shaped the spatial distribution of the disease. In these real studies, we also propose new surveillance tools that can be used by regional public health services to make a more efficient use of their resources.



قيم البحث

اقرأ أيضاً

The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the fir st wave of the COVID-19 virus in China and compare it to other global locations. We provide a comprehensive picture of the spatial propagation from Hubei to other provinces in China in terms of distance, population size, and human mobility and their scaling relations. Since strict quarantine has been usually applied between cities, more insight about the temporal evolution of the disease can be obtained by analyzing the epidemic within cities, especially the time evolution of the infection, death, and recovery rates which affected by policies. We study and compare the infection rate in different cities in China and provinces in Italy and find that the disease spread is characterized by a two-stages process. At early times, at order of few days, the infection rate is close to a constant probably due to the lack of means to detect infected individuals before infection symptoms are observed. Then at later times it decays approximately exponentially due to quarantines. The time evolution of the death and recovery rates also distinguish between these two stages and reflect the health system situation which could be overloaded.
Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.
The novel coronavirus disease (COVID-19) has spread rapidly across the world in a short period of time and with a heterogeneous pattern. Understanding the underlying temporal and spatial dynamics in the spread of COVID-19 can result in informed and t imely public health policies. In this paper, we use a spatio-temporal stochastic model to explain the temporal and spatial variations in the daily number of new confirmed cases in Spain, Italy and Germany from late February to mid September 2020. Using a hierarchical Bayesian framework, we found that the temporal trend of the epidemic in the three countries rapidly reached their peaks and slowly started to decline at the beginning of April and then increased and reached their second maximum in August. However decline and increase of the temporal trend seems to be sharper in Spain and smoother in Germany. The spatial heterogeneity of the relative risk of COVID-19 in Spain is also more pronounced than Italy and Germany.
We established a Spatio-Temporal Neural Network, namely STNN, to forecast the spread of the coronavirus COVID-19 outbreak worldwide in 2020. The basic structure of STNN is similar to the Recurrent Neural Network (RNN) incorporating with not only temp oral data but also spatial features. Two improved STNN architectures, namely the STNN with Augmented Spatial States (STNN-A) and the STNN with Input Gate (STNN-I), are proposed, which ensure more predictability and flexibility. STNN and its variants can be trained using Stochastic Gradient Descent (SGD) algorithm and its improved variants (e.g., Adam, AdaGrad and RMSProp). Our STNN models are compared with several classical epidemic prediction models, including the fully-connected neural network (BPNN), and the recurrent neural network (RNN), the classical curve fitting models, as well as the SEIR dynamical system model. Numerical simulations demonstrate that STNN models outperform many others by providing more accurate fitting and prediction, and by handling both spatial and temporal data.
209 - Amol Kapoor , Xue Ben , Luyang Liu 2020
In this work, we examine a novel forecasting approach for COVID-19 case prediction that uses Graph Neural Networks and mobility data. In contrast to existing time series forecasting models, the proposed approach learns from a single large-scale spati o-temporal graph, where nodes represent the region-level human mobility, spatial edges represent the human mobility based inter-region connectivity, and temporal edges represent node features through time. We evaluate this approach on the US county level COVID-19 dataset, and demonstrate that the rich spatial and temporal information leveraged by the graph neural network allows the model to learn complex dynamics. We show a 6% reduction of RMSLE and an absolute Pearson Correlation improvement from 0.9978 to 0.998 compared to the best performing baseline models. This novel source of information combined with graph based deep learning approaches can be a powerful tool to understand the spread and evolution of COVID-19. We encourage others to further develop a novel modeling paradigm for infectious disease based on GNNs and high resolution mobility data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا