ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-Modal Self-Attention Distillation for Prostate Cancer Segmentation

109   0   0.0 ( 0 )
 نشر من قبل Xiaoang Shen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic segmentation of the prostate cancer from the multi-modal magnetic resonance images is of critical importance for the initial staging and prognosis of patients. However, how to use the multi-modal image features more efficiently is still a challenging problem in the field of medical image segmentation. In this paper, we develop a cross-modal self-attention distillation network by fully exploiting the encoded information of the intermediate layers from different modalities, and the extracted attention maps of different modalities enable the model to transfer the significant spatial information with more details. Moreover, a novel spatial correlated feature fusion module is further employed for learning more complementary correlation and non-linear information of different modality images. We evaluate our model in five-fold cross-validation on 358 MRI with biopsy confirmed. Extensive experiment results demonstrate that our proposed network achieves state-of-the-art performance.



قيم البحث

اقرأ أيضاً

Convolutional Neural Networks (CNNs) have been used for automated detection of prostate cancer where Area Under Receiver Operating Characteristic (ROC) curve (AUC) is usually used as the performance metric. Given that AUC is not differentiable, commo n practice is to train the CNN using a loss functions based on other performance metrics such as cross entropy and monitoring AUC to select the best model. In this work, we propose to fine-tune a trained CNN for prostate cancer detection using a Genetic Algorithm to achieve a higher AUC. Our dataset contained 6-channel Diffusion-Weighted MRI slices of prostate. On a cohort of 2,955 training, 1,417 validation, and 1,334 test slices, we reached test AUC of 0.773; a 9.3% improvement compared to the base CNN model.
218 - Cheng Li , Hui Sun , Zaiyi Liu 2019
Multi-modal magnetic resonance imaging (MRI) is essential in clinics for comprehensive diagnosis and surgical planning. Nevertheless, the segmentation of multi-modal MR images tends to be time-consuming and challenging. Convolutional neural network ( CNN)-based multi-modal MR image analysis commonly proceeds with multiple down-sampling streams fused at one or several layers. Although inspiring performance has been achieved, the feature fusion is usually conducted through simple summation or concatenation without optimization. In this work, we propose a supervised image fusion method to selectively fuse the useful information from different modalities and suppress the respective noise signals. Specifically, an attention block is introduced as guidance for the information selection. From the different modalities, one modality that contributes most to the results is selected as the master modality, which supervises the information selection of the other assistant modalities. The effectiveness of the proposed method is confirmed through breast mass segmentation in MR images of two modalities and better segmentation results are achieved compared to the state-of-the-art methods.
The vast majority of semantic segmentation approaches rely on pixel-level annotations that are tedious and time consuming to obtain and suffer from significant inter and intra-expert variability. To address these issues, recent approaches have levera ged categorical annotations at the slide-level, that in general suffer from robustness and generalization. In this paper, we propose a novel weakly supervised multi-instance learning approach that deciphers quantitative slide-level annotations which are fast to obtain and regularly present in clinical routine. The extreme potentials of the proposed approach are demonstrated for tumor segmentation of solid cancer subtypes. The proposed approach achieves superior performance in out-of-distribution, out-of-location, and out-of-domain testing sets.
89 - Kang Li , Lequan Yu , Shujun Wang 2020
The success of deep convolutional neural networks is partially attributed to the massive amount of annotated training data. However, in practice, medical data annotations are usually expensive and time-consuming to be obtained. Considering multi-moda lity data with the same anatomic structures are widely available in clinic routine, in this paper, we aim to exploit the prior knowledge (e.g., shape priors) learned from one modality (aka., assistant modality) to improve the segmentation performance on another modality (aka., target modality) to make up annotation scarcity. To alleviate the learning difficulties caused by modality-specific appearance discrepancy, we first present an Image Alignment Module (IAM) to narrow the appearance gap between assistant and target modality data.We then propose a novel Mutual Knowledge Distillation (MKD) scheme to thoroughly exploit the modality-shared knowledge to facilitate the target-modality segmentation. To be specific, we formulate our framework as an integration of two individual segmentors. Each segmentor not only explicitly extracts one modality knowledge from corresponding annotations, but also implicitly explores another modality knowledge from its counterpart in mutual-guided manner. The ensemble of two segmentors would further integrate the knowledge from both modalities and generate reliable segmentation results on target modality. Experimental results on the public multi-class cardiac segmentation data, i.e., MMWHS 2017, show that our method achieves large improvements on CT segmentation by utilizing additional MRI data and outperforms other state-of-the-art multi-modality learning methods.
Segmentation and accurate localization of nuclei in histopathological images is a very challenging problem, with most existing approaches adopting a supervised strategy. These methods usually rely on manual annotations that require a lot of time and effort from medical experts. In this study, we present a self-supervised approach for segmentation of nuclei for whole slide histopathology images. Our method works on the assumption that the size and texture of nuclei can determine the magnification at which a patch is extracted. We show that the identification of the magnification level for tiles can generate a preliminary self-supervision signal to locate nuclei. We further show that by appropriately constraining our model it is possible to retrieve meaningful segmentation maps as an auxiliary output to the primary magnification identification task. Our experiments show that with standard post-processing, our method can outperform other unsupervised nuclei segmentation approaches and report similar performance with supervised ones on the publicly available MoNuSeg dataset. Our code and models are available online to facilitate further research.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا