ﻻ يوجد ملخص باللغة العربية
Classical learning theory suggests that the optimal generalization performance of a machine learning model should occur at an intermediate model complexity, with simpler models exhibiting high bias and more complex models exhibiting high variance of the predictive function. However, such a simple trade-off does not adequately describe deep learning models that simultaneously attain low bias and variance in the heavily overparameterized regime. A primary obstacle in explaining this behavior is that deep learning algorithms typically involve multiple sources of randomness whose individual contributions are not visible in the total variance. To enable fine-grained analysis, we describe an interpretable, symmetric decomposition of the variance into terms associated with the randomness from sampling, initialization, and the labels. Moreover, we compute the high-dimensional asymptotic behavior of this decomposition for random feature kernel regression, and analyze the strikingly rich phenomenology that arises. We find that the bias decreases monotonically with the network width, but the variance terms exhibit non-monotonic behavior and can diverge at the interpolation boundary, even in the absence of label noise. The divergence is caused by the emph{interaction} between sampling and initialization and can therefore be eliminated by marginalizing over samples (i.e. bagging) emph{or} over the initial parameters (i.e. ensemble learning).
Adversarially trained models exhibit a large generalization gap: they can interpolate the training set even for large perturbation radii, but at the cost of large test error on clean samples. To investigate this gap, we decompose the test risk into i
Sampling from a log-concave distribution function is one core problem that has wide applications in Bayesian statistics and machine learning. While most gradient free methods have slow convergence rate, the Langevin Monte Carlo (LMC) that provides fa
Langevin Monte Carlo (LMC) is a popular Bayesian sampling method. For the log-concave distribution function, the method converges exponentially fast, up to a controllable discretization error. However, the method requires the evaluation of a full gra
We examine gradient descent on unregularized logistic regression problems, with homogeneous linear predictors on linearly separable datasets. We show the predictor converges to the direction of the max-margin (hard margin SVM) solution. The result al
Nonnegative CANDECOMP/PARAFAC (NCP) decomposition is an important tool to process nonnegative tensor. Sometimes, additional sparse regularization is needed to extract meaningful nonnegative and sparse components. Thus, an optimization method for NCP