ﻻ يوجد ملخص باللغة العربية
Channel pruning has demonstrated its effectiveness in compressing ConvNets. In many related arts, the importance of an output feature map is only determined by its associated filter. However, these methods ignore a small part of weights in the next layer which disappears as the feature map is removed. They ignore the phenomenon of weight dependency. Besides, many pruning methods use only one criterion for evaluation and find a sweet spot of pruning structure and accuracy in a trial-and-error fashion, which can be time-consuming. In this paper, we proposed a channel pruning algorithm via multi-criteria based on weight dependency, CPMC, which can compress a pre-trained model directly. CPMC defines channel importance in three aspects, including its associated weight value, computational cost, and parameter quantity. According to the phenomenon of weight dependency, CPMC gets channel importance by assessing its associated filter and the corresponding partial weights in the next layer. Then CPMC uses global normalization to achieve cross-layer comparison. Finally, CPMC removes less important channels by global ranking. CPMC can compress various CNN models, including VGGNet, ResNet, and DenseNet on various image classification datasets. Extensive experiments have shown CPMC outperforms the others significantly.
Channel pruning is a popular technique for compressing convolutional neural networks (CNNs), where various pruning criteria have been proposed to remove the redundant filters. From our comprehensive experiments, we found two blind spots in the study
The convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead against efficient deployment. Structured (channel) pruning is usually applied to reduce the model redundancy while pres
Filter pruning is widely used to reduce the computation of deep learning, enabling the deployment of Deep Neural Networks (DNNs) in resource-limited devices. Conventional Hard Filter Pruning (HFP) method zeroizes pruned filters and stops updating the
Early prediction of cerebral palsy is essential as it leads to early treatment and monitoring. Deep learning has shown promising results in biomedical engineering thanks to its capacity of modelling complicated data with its non-linear architecture.
Extracting effective deep features to represent content and style information is the key to universal style transfer. Most existing algorithms use VGG19 as the feature extractor, which incurs a high computational cost and impedes real-time style tran