ﻻ يوجد ملخص باللغة العربية
Deep learning (DL) models have become core modules for many applications. However, deploying these models without careful performance benchmarking that considers both hardware and softwares impact often leads to poor service and costly operational expenditure. To facilitate DL models deployment, we implement an automatic and comprehensive benchmark system for DL developers. To accomplish benchmark-related tasks, the developers only need to prepare a configuration file consisting of a few lines of code. Our system, deployed to a leader server in DL clusters, will dispatch users benchmark jobs to follower workers. Next, the corresponding requests, workload, and even models can be generated automatically by the system to conduct DL serving benchmarks. Finally, developers can leverage many analysis tools and models in our system to gain insights into the trade-offs of different system configurations. In addition, a two-tier scheduler is incorporated to avoid unnecessary interference and improve average job compilation time by up to 1.43x (equivalent of 30% reduction). Our system design follows the best practice in DL clusters operations to expedite day-to-day DL service evaluation efforts by the developers. We conduct many benchmark experiments to provide in-depth and comprehensive evaluations. We believe these results are of great values as guidelines for DL service configuration and resource allocation.
Deep learning models typically use single-precision (FP32) floating point data types for representing activations and weights, but a slew of recent research work has shown that computations with reduced-precision data types (FP16, 16-bit integers, 8-
Analog hardware implemented deep learning models are promising for computation and energy constrained systems such as edge computing devices. However, the analog nature of the device and the associated many noise sources will cause changes to the val
We propose a novel theoretical framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks (e.g., SimCLR). First, we prove that in each SGD update of SimCLR with various loss functions, incl
Automatic Differentiation Variational Inference (ADVI) is a useful tool for efficiently learning probabilistic models in machine learning. Generally approximate posteriors learned by ADVI are forced to be unimodal in order to facilitate use of the re
Federated Learning (FL) enables learning a shared model across many clients without violating the privacy requirements. One of the key attributes in FL is the heterogeneity that exists in both resource and data due to the differences in computation a