ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Speedup of Monte Carlo Integration with respect to the Number of Dimensions and its Application to Finance

314   0   0.0 ( 0 )
 نشر من قبل Koichi Miyamoto
 تاريخ النشر 2020
  مجال البحث فيزياء مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Monte Carlo integration using quantum computers has been widely investigated, including applications to concrete problems. It is known that quantum algorithms based on quantum amplitude estimation (QAE) can compute an integral with a smaller number of iterative calls of the quantum circuit which calculates the integrand, than classical methods call the integrand subroutine. However, the issues about the iterative operations in the integrand circuit have not been discussed so much. That is, in the high-dimensional integration, many random numbers are used for calculation of the integrand and in some cases similar calculations are repeated to obtain one sample value of the integrand. In this paper, we point out that we can reduce the number of such repeated operations by a combination of the nested QAE and the use of pseudorandom numbers (PRNs), if the integrand has the separable form with respect to contributions from distinct random numbers. The use of PRNs, which the authors originally proposed in the context of the quantum algorithm for Monte Carlo, is the key factor also in this paper, since it enables parallel computation of the separable terms in the integrand. Furthermore, we pick up one use case of this method in finance, the credit portfolio risk measurement, and estimate to what extent the complexity is reduced.

قيم البحث

اقرأ أيضاً

68 - T. R. Cass , P. K. Friz 2006
We extend the Bismut-Elworthy-Li formula to non-degenerate jump diffusions and payoff functions depending on the process at multiple future times. In the spirit of Fournie et al [13] and Davis and Johansson [9] this can improve Monte Carlo numerics f or stochastic volatility models with jumps. To this end one needs so-called Malliavin weights and we give explicit formulae valid in presence of jumps: (a) In a non-degenerate situation, the extended BEL formula represents possible Malliavin weights as Ito integrals with explicit integrands; (b) in a hypoelliptic setting we review work of Arnaudon and Thalmaier [1] and also find explicit weights, now involving the Malliavin covariance matrix, but still straight-forward to implement. (This is in contrast to recent work by Forster, Lutkebohmert and Teichmann where weights are constructed as anticipating Skorohod integrals.) We give some financial examples covered by (b) but note that most practical cases of poor Monte Carlo performance, Digital Cliquet contracts for instance, can be dealt with by the extended BEL formula and hence without any reliance on Malliavin calculus at all. We then discuss some of the approximations, often ignored in the literature, needed to justify the use of the Malliavin weights in the context of standard jump diffusion models. Finally, as all this is meant to improve numerics, we give some numerical results with focus on Cliquets under the Heston model with jumps.
We study the potential energy surface of the ozone molecule by means of Quantum Monte Carlo simulations based on the resonating valence bond concept. The trial wave function consists of an antisymmetrized geminal power arranged in a single-determinan t that is multiplied by a Jastrow correlation factor. Whereas the determinantal part incorporates static correlation effects, the augmented real-space correlation factor accounts for the dynamics electron correlation. The accuracy of this approach is demonstrated by computing the potential energy surface for the ozone molecule in three vibrational states: symmetric, asymmetric and scissoring. We find that the employed wave function provides a detailed description of rather strongly-correlated multi-reference systems, which is in quantitative agreement with experiment.
Inspired by recent progress in quantum algorithms for ordinary and partial differential equations, we study quantum algorithms for stochastic differential equations (SDEs). Firstly we provide a quantum algorithm that gives a quadratic speed-up for mu ltilevel Monte Carlo methods in a general setting. As applications, we apply it to compute expectation values determined by classical solutions of SDEs, with improved dependence on precision. We demonstrate the use of this algorithm in a variety of applications arising in mathematical finance, such as the Black-Scholes and Local Volatility models, and Greeks. We also provide a quantum algorithm based on sublinear binomial sampling for the binomial option pricing model with the same improvement.
The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1 /2 models in a transverse field, using a discretized Suzuki-Trotter imaginary time formalism. Here we show how to take analytically the continuous imaginary time limit. Our main technical contribution is an explicit procedure to generate the spin trajectories in a path integral representation of the imaginary time dynamics. As a side result we also show how this procedure can be used in simple heat-bath like Monte Carlo simulations of generic quantum spin models. The replica symmetric continuous time quantum cavity method is formulated for a wide class of models, and applied as a simple example on the Bethe lattice ferromagnet in a transverse field. The results of the methods are confronted with various approximation schemes in this particular case. On this system we performed quantum Monte Carlo simulations that confirm the exactness of the cavity method in the thermodynamic limit.
28 - Kousuke Nakano , Ryo Maezono , 2019
In this work, we report potential energy surfaces (PESs) of the sodium dimer calculated by variational (VMC) and lattice regularized diffusion Monte Carlo (LRDMC). The VMC calculation is accurate for determining the equilibrium distance and the quali tative shape of the experimental PES. Remarkably, after the application of the LRDMC projection to this single determinant ansatz, namely the Jastrow Antisymmetrized Geminal Product (JAGP), chemical accuracy (~ 1kcal/mol) is reached, and the obtained dissociation energy, equilibrium internuclear distance, and harmonic vibrational frequency are in very good agreement with the experimental ones. This outcome crucially depends on the quality of the optimization used to determine the best possible trial function within the chosen ansatz. The strategy adopted in this work is to minimize the variational energy by initializing the trial function with the DFT single determinant ansatz expanded exactly in the same atomic basis used for the corresponding VMC and LRDMC calculations. This atomic basis is ad-hoc reshaped for QMC calculations. Indeed, we multiply the standard Gaussian type atomic orbitals by a one-body Jastrow factor, satisfying in this way the electron-ion cusp conditions. This allows us to use a very small basis almost converged in the complete basis set limit, by reducing the computational effort as well as the statistical fluctuations on the total energy. In order to achieve these important advantages, we have defined a very efficient DFT algorithm in the mentioned basis, by estimating the corresponding matrix elements on a mesh, and by using a much finer mesh grid in the vicinity of nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا