ﻻ يوجد ملخص باللغة العربية
Crack micro-geometries and tribological properties pose an important impact on the elastic characteristics of fractured rocks. Numerical simulation as a promising way for this issue still faces some challenges. With the rapid development of computers and computational techniques, discrete-based numerical approaches with desirable properties have been increasingly developed, but few attempts to consider the particle surface roughness in a lattice type model. For this purpose, an integrated numerical scheme accounting rough contact deformation is developed by coupling modified LSM and DFN modeling for predicting the effective mechanical properties of a realistic outcrop. Smooth joint logic is introduced to consider contact and slip behaviors at fracture surfaces and a modified contact relation to estimating the normal force-displacement from rough contact deformation. Improved constitutive laws are developed and employed for rock matrix and rough fracture surface and implemented in the modified LSM. Complex fracture networks presented by DFNs are automatically extracted based on the gradient Hough transform algorithm. This developed framework is validated by classic equivalent medium theories. It shows the model could be used to emulate naturally-fractured media and to quantitatively investigate the effects of fracture attributes and micro-scale surface roughness on the compression mechanism.
Crack microgeometries pose a paramount influence on effective elastic characteristics and sonic responses. Geophysical exploration based on seismic methods are widely used to assess and understand the presence of fractures. Numerical simulation as a
We study two-dimensional tensorial elastic wave transport in densely fractured media and document transitions from propagation to diffusion and to localization/delocalization. For large fracture stiffness, waves are propagative at the scale of the sy
Field-scale properties of fractured rocks play crucial role in many subsurface applications, yet methodologies for identification of the statistical parameters of a discrete fracture network (DFN) are scarce. We present an inversion technique to infe
Earthquakes cause lasting changes in static equilibrium, resulting in global deformation fields that can be observed. Consequently, deformation measurements such as those provided by satellite based InSAR monitoring can be used to infer an earthquake
The Finite Difference (FD) and the Spectral Boundary Integral (SBI) methods have been used extensively to model spontaneously propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modeling