ﻻ يوجد ملخص باللغة العربية
We investigate the role of linear mechanisms in the emergence of nonlinear horizontal self-propelled states of a heaving foil in a quiescent fluid. Two states are analyzed: a periodic state of unidirectional motion and a quasi-periodic state of slow back & forth motion around a mean horizontal position. The states emergence is explained through a fluid-solid Floquet stability analysis of the non-propulsive symmetric base solution. Unlike a purely-hydrodynamic analysis, our analysis accurately determine the locomotion states onset. An unstable synchronous mode is found when the unidirectional propulsive solution is observed. The obtained mode has a propulsive character, featuring a mean horizontal velocity and an asymmetric flow that generates a horizontal force accelerating the foil. An unstable asynchronous mode, also featuring flow asymmetry and a non-zero velocity, is found when the back & forth state is observed. Its associated complex multiplier introduces a slow modulation of the flapping period, agreeing with the quasi-periodic nature of the back & forth regime. The temporal evolution of this perturbation shows how the horizontal force exerted by the flow is alternatively propulsive or resistive over a slow period. For both modes, an analysis of the velocity and force perturbation time-averaged over the flapping period is used to establish physical instability criteria. The behaviour for large solid-to-fluid density ratio of the modes is thus analyzed. The asynchronous fluid-solid mode converges towards the purely-hydrodynamic one, whereas the synchronous mode becomes marginally unstable in our analysis not converging to the purely-hydrodynamic analysis where it is never destabilised.
We present theory and experiments demonstrating the existence of invariant manifolds that impede the motion of microswimmers in two-dimensional fluid flows. One-way barriers are apparent in a hyperbolic fluid flow that block the swimming of both smoo
We consider self-propelled droplets which are driven by internal flow. Tracer particles, which are advected by the flow, in general follow chaotic trajectories, even though the motion of the autonomous swimmer is completely regular. The flow is mixin
Inviscid computational results are presented on a self-propelled virtual body combined with an airfoil undergoing pitch oscillations about its leading-edge. The scaling trends of the time-averaged thrust forces are shown to be predicted accurately by
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circula