ترغب بنشر مسار تعليمي؟ اضغط هنا

FeatherTTS: Robust and Efficient attention based Neural TTS

77   0   0.0 ( 0 )
 نشر من قبل Qiao Tian
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Attention based neural TTS is elegant speech synthesis pipeline and has shown a powerful ability to generate natural speech. However, it is still not robust enough to meet the stability requirements for industrial products. Besides, it suffers from slow inference speed owning to the autoregressive generation process. In this work, we propose FeatherTTS, a robust and efficient attention-based neural TTS system. Firstly, we propose a novel Gaussian attention which utilizes interpretability of Gaussian attention and the strict monotonic property in TTS. By this method, we replace the commonly used stop token prediction architecture with attentive stop prediction. Secondly, we apply block sparsity on the autoregressive decoder to speed up speech synthesis. The experimental results show that our proposed FeatherTTS not only nearly eliminates the problem of word skipping, repeating in particularly hard texts and keep the naturalness of generated speech, but also speeds up acoustic feature generation by 3.5 times over Tacotron. Overall, the proposed FeatherTTS can be $35$x faster than real-time on a single CPU.



قيم البحث

اقرأ أيضاً

In this paper, we propose a text-to-speech (TTS)-driven data augmentation method for improving the quality of a non-autoregressive (AR) TTS system. Recently proposed non-AR models, such as FastSpeech 2, have successfully achieved fast speech synthesi s system. However, their quality is not satisfactory, especially when the amount of training data is insufficient. To address this problem, we propose an effective data augmentation method using a well-designed AR TTS system. In this method, large-scale synthetic corpora including text-waveform pairs with phoneme duration are generated by the AR TTS system and then used to train the target non-AR model. Perceptual listening test results showed that the proposed method significantly improved the quality of the non-AR TTS system. In particular, we augmented five hours of a training database to 179 hours of a synthetic one. Using these databases, our TTS system consisting of a FastSpeech 2 acoustic model with a Parallel WaveGAN vocoder achieved a mean opinion score of 3.74, which is 40% higher than that achieved by the conventional method.
225 - Liping Chen , Yan Deng , Xi Wang 2021
This paper presents a speech BERT model to extract embedded prosody information in speech segments for improving the prosody of synthesized speech in neural text-to-speech (TTS). As a pre-trained model, it can learn prosody attributes from a large am ount of speech data, which can utilize more data than the original training data used by the target TTS. The embedding is extracted from the previous segment of a fixed length in the proposed BERT. The extracted embedding is then used together with the mel-spectrogram to predict the following segment in the TTS decoder. Experimental results obtained by the Transformer TTS show that the proposed BERT can extract fine-grained, segment-level prosody, which is complementary to utterance-level prosody to improve the final prosody of the TTS speech. The objective distortions measured on a single speaker TTS are reduced between the generated speech and original recordings. Subjective listening tests also show that the proposed approach is favorably preferred over the TTS without the BERT prosody embedding module, for both in-domain and out-of-domain applications. For Microsoft professional, single/multiple speakers and the LJ Speaker in the public database, subjective preference is similarly confirmed with the new BERT prosody embedding. TTS demo audio samples are in https://judy44chen.github.io/TTSSpeechBERT/.
While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch betw een the training and inference process, that results in unpredictable performance for out-of-domain test data at run-time. To overcome this, we propose a teacher-student training scheme for Tacotron-based TTS by introducing a distillation loss function in addition to the feature loss function. We first train a Tacotron2-based TTS model by always providing natural speech frames to the decoder, that serves as a teacher model. We then train another Tacotron2-based model as a student model, of which the decoder takes the predicted speech frames as input, similar to how the decoder works during run-time inference. With the distillation loss, the student model learns the output probabilities from the teacher model, that is called knowledge distillation. Experiments show that our proposed training scheme consistently improves the voice quality for out-of-domain test data both in Chinese and English systems.
The Transformer has shown impressive performance in automatic speech recognition. It uses the encoder-decoder structure with self-attention to learn the relationship between the high-level representation of the source inputs and embedding of the targ et outputs. In this paper, we propose a novel decoder structure that features a self-and-mixed attention decoder (SMAD) with a deep acoustic structure (DAS) to improve the acoustic representation of Transformer-based LVCSR. Specifically, we introduce a self-attention mechanism to learn a multi-layer deep acoustic structure for multiple levels of acoustic abstraction. We also design a mixed attention mechanism that learns the alignment between different levels of acoustic abstraction and its corresponding linguistic information simultaneously in a shared embedding space. The ASR experiments on Aishell-1 shown that the proposed structure achieves CERs of 4.8% on the dev set and 5.1% on the test set, which are the best results obtained on this task to the best of our knowledge.
While deep neural networks have shown powerful performance in many audio applications, their large computation and memory demand has been a challenge for real-time processing. In this paper, we study the impact of scaling the precision of neural netw orks on the performance of two common audio processing tasks, namely, voice-activity detection and single-channel speech enhancement. We determine the optimal pair of weight/neuron bit precision by exploring its impact on both the performance and processing time. Through experiments conducted with real user data, we demonstrate that deep neural networks that use lower bit precision significantly reduce the processing time (up to 30x). However, their performance impact is low (< 3.14%) only in the case of classification tasks such as those present in voice activity detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا