ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a text-to-speech (TTS)-driven data augmentation method for improving the quality of a non-autoregressive (AR) TTS system. Recently proposed non-AR models, such as FastSpeech 2, have successfully achieved fast speech synthesis system. However, their quality is not satisfactory, especially when the amount of training data is insufficient. To address this problem, we propose an effective data augmentation method using a well-designed AR TTS system. In this method, large-scale synthetic corpora including text-waveform pairs with phoneme duration are generated by the AR TTS system and then used to train the target non-AR model. Perceptual listening test results showed that the proposed method significantly improved the quality of the non-AR TTS system. In particular, we augmented five hours of a training database to 179 hours of a synthetic one. Using these databases, our TTS system consisting of a FastSpeech 2 acoustic model with a Parallel WaveGAN vocoder achieved a mean opinion score of 3.74, which is 40% higher than that achieved by the conventional method.
This paper presents a speech BERT model to extract embedded prosody information in speech segments for improving the prosody of synthesized speech in neural text-to-speech (TTS). As a pre-trained model, it can learn prosody attributes from a large am
Recently, text-to-speech (TTS) models such as FastSpeech and ParaNet have been proposed to generate mel-spectrograms from text in parallel. Despite the advantage, the parallel TTS models cannot be trained without guidance from autoregressive TTS mode
Attention based neural TTS is elegant speech synthesis pipeline and has shown a powerful ability to generate natural speech. However, it is still not robust enough to meet the stability requirements for industrial products. Besides, it suffers from s
In recent years, Text-To-Speech (TTS) has been used as a data augmentation technique for speech recognition to help complement inadequacies in the training data. Correspondingly, we investigate the use of a multi-speaker TTS system to synthesize spee
Previous work on speaker adaptation for end-to-end speech synthesis still falls short in speaker similarity. We investigate an orthogonal approach to the current speaker adaptation paradigms, speaker augmentation, by creating artificial speakers and