ﻻ يوجد ملخص باللغة العربية
In this mini review, we discuss some recent developments regarding properties of (quantum) field-theory models containing anti-Hermitian Yukawa interactions between pseudoscalar fields (axions) and Dirac (or Majorana) fermions. Specifically, after motivating physically such interactions, in the context of string-inspired low-energy effective field theories, involving right-handed neutrinos and axion fields, we proceed to discuss their formal consistency within the so-called Parity-Time-reversal(PT)-symmetry framework, as well as dynamical mass generation, induced by the Yukawa interactions, for both fermions and axions. The Yukawa couplings are assumed weak, given that they are conjectured to have been generated by non-perturbative effects in the underlying microscopic string theory. The models under discussion contain, in addition to the Yukawa terms, also anti-Hermitian anomalous derivative couplings of the pseudoscalar fields to axial fermion currents, as well as interactions of the fermions with non-Hermitian axial backgrounds. We discuss the role of such additional couplings on the Yukawa-induced dynamically-generated masses. For the case where the fermions are right-handed neutrinos, we compare such masses with the radiative ones induced by both, the anti-Hermitian anomalous terms and the anti-Hermitian Yukawa interactions in phenomenologically relevant models.
We explore a scenario in the Standard Model in which dimension four Yukawa couplings are either forbidden by a symmetry, or happen to be very tiny, and the Yukawa interactions are dominated by effective dimension six interactions. In this case, the H
We investigate the impact of operators of higher canonical dimension on the lower Higgs mass consistency bound by means of generalized Higgs-Yukawa interactions. Analogously to higher-order operators in the bare Higgs potential in an effective field
We introduce a simple model of dynamical supersymmetry breaking. It is like a supersymmetric version of a Nambu--Jona-Lasinio model with a spin one composite. The simplest version of the model as presented here has a single chiral superfield (multipl
Renormalizable SO(10) grand unified theories (GUTs), extended by $O(N_g)_F$ family gauge symmetry, generate minimal supersymmetric Standard Model flavour structure dynamically via vacuum expectation values of Yukawon Higgs multiplets. For concrete il
We investigate the dynamical properties for non-Hermitian triple-well system with a loss in the middle well. When chemical potentials in two end wells are uniform and nonlinear interactions are neglected, there always exists a dark state, whose eigen