ﻻ يوجد ملخص باللغة العربية
We investigate the dynamical properties for non-Hermitian triple-well system with a loss in the middle well. When chemical potentials in two end wells are uniform and nonlinear interactions are neglected, there always exists a dark state, whose eigenenergy becomes zero, and the projections onto which do not change over time and the loss factor. The increasing of loss factor only makes the damping form from the oscillating decay to over-damping decay. However, when the nonlinear interaction is introduced, even interactions in the two end wells are also uniform, the projection of the dark state will be obviously diminished. Simultaneously the increasing of loss factor will also aggravate the loss. In this process the interaction in the middle well plays no role. When two chemical potentials or interactions in two end wells are not uniform all disappear with time. In addition, when we extend the triple-well system to a general (2n + 1)-well, the loss is reduced greatly by the factor 1=2n in the absence of the nonlinear interaction.
We study interacting dipolar atomic bosons in a triple-well potential within a ring geometry. This system is shown to be equivalent to a three-site Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying the effective on-site int
Non-Hermitian systems with specific forms of Hamiltonians can exhibit novel phenomena. However, it is difficult to study their quantum thermodynamical properties. In particular, the calculation of work statistics can be challenging in non-Hermitian s
We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into
We investigate the energy structures and the dynamics of a Bose-Einstein condensates (BEC) in a triple-well potential coupled a high finesse optical cavity within a mean field approach. Due to the intrinsic atom-cavity field nonlinearity, several int
We investigate the ground state properties and tunneling dynamics of ultracold dipolar bosons in a one dimensional triple well trap from a few-body ab-initio perspective. Our focus is primarily on the distinctive features of dipolar bosons compared t