ﻻ يوجد ملخص باللغة العربية
It is expected that all astrophysical black holes in equilibrium are well described by the Kerr solution. Moreover, any black hole far away from equilibrium, such as one initially formed in a compact binary merger or by the collapse of a massive star, will eventually reach a final equilibrium Kerr state. At sufficiently late times in this process of reaching equilibrium, we expect that the black hole is modeled as a perturbation around the final state. The emitted gravitational waves will then be damped sinusoids with frequencies and damping times given by the quasi-normal mode spectrum of the final Kerr black hole. An observational test of this scenario, often referred to as black hole spectroscopy, is one of the major goals of gravitational wave astronomy. It was recently suggested that the quasi-normal mode description including the higher overtones might hold even right after the remnant black hole is first formed. At these times, the black hole is expected to be highly dynamical and non-linear effects are likely to be important. In this paper we investigate this remarkable scenario in terms of the horizon dynamics. Working with high accuracy simulations of a simple configuration, namely the head-on collision of two non-spinning black holes with unequal masses, we study the dynamics of the final common horizon in terms of its shear and its multipole moments. We show that they are indeed well described by a superposition of ringdown modes as long as a sufficiently large number of higher overtones are included. This description holds even for the highly dynamical final black hole shortly after its formation. We discuss the implications and caveats of this result for black hole spectroscopy and for our understanding of the approach to equilibrium.
The black hole uniqueness and the no-hair theorems imply that the quasinormal spectrum of any astrophysical black hole is determined solely by its mass and spin. The countably infinite number of quasinormal modes of a Kerr black hole are thus related
We study curvature invariants in a binary black hole merger. It has been conjectured that one could define a quasi-local and foliation independent black hole horizon by finding the level--$0$ set of a suitable curvature invariant of the Riemann tenso
In this paper we study the fermion quasi-normal modes of a 4-dimensional rotating black-hole using the WKB(J) (to third and sixth order) and the AIM semi-analytic methods in the massless Dirac fermion sector. These semi-analytic approximations are co
We investigate perturbations of the Schwarzschild geometry using a linearization of the Einstein vacuum equations within a Bondi-Sachs, or null cone, formalism. We develop a numerical method to calculate the quasi-normal modes, and present results fo
The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics