ﻻ يوجد ملخص باللغة العربية
We study curvature invariants in a binary black hole merger. It has been conjectured that one could define a quasi-local and foliation independent black hole horizon by finding the level--$0$ set of a suitable curvature invariant of the Riemann tensor. The conjecture is the geometric horizon conjecture and the associated horizon is the geometric horizon. We study this conjecture by tracing the level--$0$ set of the complex scalar polynomial invariant, $mathcal{D}$, through a quasi-circular binary black hole merger. We approximate these level--$0$ sets of $mathcal{D}$ with level--$varepsilon$ sets of $|mathcal{D}|$ for small $varepsilon$. We locate the local minima of $|mathcal{D}|$ and find that the positions of these local minima correspond closely to the level--$varepsilon$ sets of $|mathcal{D}|$ and we also compare with the level--$0$ sets of $text{Re}(mathcal{D})$. The analysis provides evidence that the level--$varepsilon$ sets track a unique geometric horizon. By studying the behaviour of the zero sets of $text{Re}(mathcal{D})$ and $text{Im}(mathcal{D})$ and also by studying the MOTSs and apparent horizons of the initial black holes, we observe that the level--$varepsilon$ set that best approximates the geometric horizon is given by $varepsilon = 10^{-3}$.
It is expected that all astrophysical black holes in equilibrium are well described by the Kerr solution. Moreover, any black hole far away from equilibrium, such as one initially formed in a compact binary merger or by the collapse of a massive star
The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics
We find strong numerical evidence for a new phenomenon in a binary black hole spacetime, namely the merger of marginally outer trapped surfaces (MOTSs). By simulating the head-on collision of two non-spinning unequal mass black holes, we observe that
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were anal
We present the results of 14 simulations of nonspinning black hole binaries with mass ratios $q=m_1/m_2$ in the range $1/100leq qleq1$. For each of these simulations we perform three runs at increasing resolution to assess the finite difference error