ﻻ يوجد ملخص باللغة العربية
We here show that dual-band GPS measurements of precipitable water vapor (PWV) at KPNO predict the overall per-image sensitivity of the Mayall z-band Legacy Survey (MzLS). The per-image variation in the brightness of individual stars is strongly correlated with the measured PWV and the color of the star. We use synthetic stellar spectra and TAPAS transmission models to predict the expected PWV-induced photometric errors and find good agreement with the observations. We also find that PWV absorption can be well-approximated by a linear relationship with PWV_eff and present an update on the traditional treatment in the literature. Within the range of reasonable observing conditions, the MzLS zero point varies with a standard deviation of 127 mmag. This variation is dominated by a gray secular trend with time, consistent with a gradual accumulation of contamination on optical surfaces that accounts for ~114 mmag of variation. Correcting for PWV based on a suite of stellar spectra and detailed PWV absorption models accounts for another 47 mmag of zero-point variation. The MzLS per-image sensitivity is decreased by ~40 mmag per effective mm of PWV. The difference between blue (r-z < 0.5 mag) and red (1.2 mag < r-z) stars increases by 3.25 mmag per effective mm of PWV. These results show the need for high-precision photometric surveys to simultaneously monitor PWV. We find that this GPS system provides more precise PWV measurements than using differential measurements of stars of different colors and recommend that observatories install dual-band GPS as a low-maintenance, relatively low cost, auxiliary calibration system. We extend our results of the need for well-calibrated PWV measurements by presenting calculations of the PWV photometric impact on three science cases of interest: stellar photometry, supernova cosmology, and quasar identification and variability.
We report on the measurements of telluric water vapor made with the instrument FIFI-LS on SOFIA. Since November 2018, FIFI-LS has measured the water vapor overburden with the same measurement setup on each science flight with about 10 data points thr
We present the photometric calibration of the Supernova Legacy Survey (SNLS) fields. The SNLS aims at measuring the distances to SNe Ia at (0.3<z<1) using MegaCam, the 1 deg^2 imager on the Canada-France-Hawaii Telescope (CFHT). The uncertainty affec
The Atacama Desert has long been established as an excellent site for submillimeter observations. Yet identifying potentially optimal locations for a new facility within this region can require long field campaigns that rely on the construction of we
Long-Short-Term-Memory (LSTM) networks have been used extensively for time series forecasting in recent years due to their ability of learning patterns over different periods of time. In this paper, this ability is applied to learning the pattern of
The atmospheric water vapor content above the Roque de los Muchachos Observatory (ORM) obtained from Global Positioning Systems (GPS) is presented. GPS measurements have been evaluated by comparison with 940nm-radiometer observations. Statistical ana