ﻻ يوجد ملخص باللغة العربية
The Atacama Desert has long been established as an excellent site for submillimeter observations. Yet identifying potentially optimal locations for a new facility within this region can require long field campaigns that rely on the construction of weather stations and radiometer facilities to take data over sufficiently long timescales. Meanwhile, high-level remote sensing data products from satellites have generally only been available at >25 km resolution, limiting their utility for astronomical site selection. We aim to improve and expedite the process of site characterization and selection through the use of km-resolution satellite data. We analyze the daytime precipitable water vapor (PWV) values inferred using near-IR measurements from the MODIS Aqua and Terra satellites, comparing the level-2 satellite products to those from existing ground-based measurements from the radiometer at the Atacama Pathfinder Experiment (APEX) site. Since the APEX radiometer data has been extensively tested and compared to atmospheric transmission models, particularly in low-PWV conditions of interest for astronomy, we use these data to re-calibrate the MODIS data for the entire region, reducing systematic errors to a level of < 3%. After re-calibration, the satellite data allow mapping of the PWV across the region, and we identify several promising sites. Our findings confirm previous results, but provide a more complete and higher resolution picture, filling in key spatial and temporal information often missing from dedicated field campaigns. We also examine the seasonal trends in the ground-based data from APEX and surrounding region, finding that both data sets indicate that PWV has increased moderately over the past two decades. We demonstrate a potentially powerful method for siting new facilities such as AtLAST and extensions to global very long baseline interferometry networks like the EHT.
We report on the measurements of telluric water vapor made with the instrument FIFI-LS on SOFIA. Since November 2018, FIFI-LS has measured the water vapor overburden with the same measurement setup on each science flight with about 10 data points thr
The atmospheric water vapor content above the Roque de los Muchachos Observatory (ORM) obtained from Global Positioning Systems (GPS) is presented. GPS measurements have been evaluated by comparison with 940nm-radiometer observations. Statistical ana
We here show that dual-band GPS measurements of precipitable water vapor (PWV) at KPNO predict the overall per-image sensitivity of the Mayall z-band Legacy Survey (MzLS). The per-image variation in the brightness of individual stars is strongly corr
Long-Short-Term-Memory (LSTM) networks have been used extensively for time series forecasting in recent years due to their ability of learning patterns over different periods of time. In this paper, this ability is applied to learning the pattern of
A Low Humidity and Temperature Profiling (LHATPRO) microwave radiometer, manufactured by Radiometer Physics GmbH (RPG), is used to monitor sky conditions over ESOs Paranal observatory in support of VLT science operations. The unit measures several ch