ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Compression of Besselon Waves for High Repetition-Rate Subpicosecond Pulses Trains

77   0   0.0 ( 0 )
 نشر من قبل Christophe Finot
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically and experimentally demonstrate the generation of high-quality low duty-cycle pulse trains at repetition rates of 28 GHz, 56 GHz and 112 GHz. Starting from a continuous wave we benefit from phase modulations in the temporal and spectral domains by applying a sinusoidal profile and a set of well-chosen $pi$ shifts, respectively, to generate a train of modified besselons at doubled repetition rate. With further nonlinear spectral expansion in a normally dispersive fiber followed by dispersion compensation we achieve subpicosecond durations and a duty cycle as low as 0.025 at 28 GHz. Spectral cancelation of one component over two or four enables to further double or quadruple the repetition rate.



قيم البحث

اقرأ أيضاً

We analyse the temporal properties of the optical pulse wave that is obtained by applying a set of spectral $pi/2$ phase shifts to continuous-wave light that is phase-modulated by a temporal sinusoidal wave. We develop an analytical model to describe this new optical waveform that we name besselon. We also discuss the reduction of sidelobes in the wave intensity profile by means of an additional spectral $pi$ phase shift, and show that the resulting pulses can be efficiently time-interleaved. The various predicted properties of the besselon are confirmed by experiments demonstrating the generation of low-duty cycle, high-quality pulses at repetition rates up to 28 GHz.
The generation of coherent light pulses in the extreme ultraviolet (XUV) spectral region with attosecond pulse durations constitutes the foundation of the field of attosecond science. Twenty years after the first demonstration of isolated attosecond pulses, they continue to be a unique tool enabling the observation and control of electron dynamics in atoms, molecules and solids. It has long been identified that an increase in the repetition rate of attosecond light sources is necessary for many applications in atomic and molecular physics, surface science, and imaging. Although high harmonic generation (HHG) at repetition rates exceeding 100 kHz, showing a continuum in the cut-off region of the XUV spectrum was already demonstrated in 2013, the number of photons per pulse was insufficient to perform pulse characterisation via attosecond streaking, let alone to perform a pump-probe experiment. Here we report on the generation and full characterisation of XUV attosecond pulses via HHG driven by near-single-cycle pulses at a repetition rate of 100 kHz. The high number of 10^6 XUV photons per pulse on target enables attosecond electron streaking experiments through which the XUV pulses are determined to consist of a dominant single attosecond pulse. These results open the door for attosecond pump-probe spectroscopy studies at a repetition rate one or two orders of magnitude above current implementations.
127 - Christophe Finot 2020
We propose and numerically validate an all-optical scheme to generate optical pulse trains with varying temporal pulse-to-pulse delay and pulse duration. Applying a temporal sinusoidal phase modulation followed by a shaping of the spectral phase enab les us to maintain high-quality Gaussian temporal profiles.
Manipulating the atomic and electronic structure of matter with strong terahertz (THz) fields while probing the response with ultrafast pulses at x-ray free electron lasers (FELs) has offered unique insights into a multitude of physical phenomena in solid state and atomic physics. Recent upgrades of x-ray FEL facilities are pushing to much higher repetition rates, enabling unprecedented signal to noise for pump probe experiments. This requires the development of suitable THz pump sources that are able to deliver intense pulses at compatible repetition rates. Here we present a high power laser-driven THz source based on optical rectification in LiNbO3 using tilted pulse front pumping. Our source is driven by a kilowatt-level Yb:YAG amplifier system operating at 100 kHz repetition rate and employing nonlinear spectral broadening and recompression to achieve sub-100 fs pulses at 1030 nm wavelength. We demonstrate a maximum of 144 mW average THz power (1.44 uJ pulse energy), consisting of single-cycle pulses centered at 0.6 THz with a peak electric field strength exceeding 150 kV/cm. These high field pulses open up a range of possibilities for nonlinear time-resolved experiments with x-ray probing at unprecedented rates.
Over the past years, ultrafast lasers with average powers in the 100 W range have become a mature technology, with a multitude of applications in science and technology. Nonlinear temporal compression of these lasers to few- or even single-cycle dura tion is often essential, yet still hard to achieve, in particular at high repetition rates. Here we report a two-stage system for compressing pulses from a 1030 nm ytterbium fiber laser to single-cycle durations with 5 ${mu}$J output pulse energy at 9.6 MHz repetition rate. In the first stage, the laser pulses are compressed from 340 to 25 fs by spectral broadening in a krypton-filled single-ring photonic crystal fiber (SR-PCF), subsequent phase compensation being achieved with chirped mirrors. In the second stage, the pulses are further compressed to single-cycle duration by soliton-effect self-compression in a neon-filled SR-PCF. We estimate a pulse duration of ~3.4 fs at the fiber output by numerically back-propagating the measured pulses. Finally, we directly measured a pulse duration of 3.8 fs (1.25 optical cycles) after compensating (using chirped mirrors) the dispersion introduced by the optical elements after the fiber, more than 50% of the total pulse energy being in the main peak. The system can produce compressed pulses with peak powers >0.6 GW and a total transmission exceeding 70%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا