ﻻ يوجد ملخص باللغة العربية
The modern theory of polarization allows for the determination of the macroscopic end charge of a truncated one-dimensional insulator, modulo the charge quantum $e$, from a knowledge of bulk properties alone. A more subtle problem is the determination of the corner charge of a two-dimensional insulator, modulo $e$, from a knowledge of bulk and edge properties alone. While previous works have tended to focus on the quantization of corner charge in the presence of symmetries, here we focus on the case that the only bulk symmetry is inversion, so that the corner charge can take arbitrary values. We develop a Wannier-based formalism that allows the corner charge to be predicted, modulo $e$, only from calculations on ribbon geometries of two different orientations. We elucidate the dependence of the interior quadrupole and edge dipole contributions upon the gauge used to construct the Wannier functions, finding that while these are individually gauge-dependent, their sum is gauge-independent. From this we conclude that the edge polarization is not by itself a physical observable, and that any Wannier-based method for computing the corner charge requires the use of a common gauge throughout the calculation. We satisfy this constraint using two Wannier construction procedures, one based on projection and another based on a gauge-consistent nested Wannier construction. We validate our theory by demonstrating the correct prediction of corner charge for several tight-binding models. We comment on the relations between our approach and previous ones that have appeared in the literature.
The modern theory of electric polarization in crystals associates the dipole moment of an insulator with a Berry phase of its electronic ground state [1, 2]. This concept constituted a breakthrough that not only solved the long-standing puzzle of how
In a tight-binding lattice model with $n$ orbitals (single-particle states) per site, Wannier functions are $n$-component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all s
The topology of electronic states in band insulators with mirror symmetry can be classified in two different ways. One is in terms of the mirror Chern number, an integer that counts the number of protected Dirac cones in the Brillouin zone of high-sy
Higher-rank electric/magnetic multipole moments are attracting attention these days as candidate order parameters for exotic material phases. However, quantum-mechanical formulation of those multipole moments is still an ongoing issue. In this paper,
Photonic crystals have provided a controllable platform to examine excitingly new topological states in open systems. In this work, we reveal photonic topological corner states in a photonic graphene with mirror-symmetrically patterned gain and loss.