ﻻ يوجد ملخص باللغة العربية
In some industrial applications such as fraud detection, the performance of common supervision techniques may be affected by the poor quality of the available labels : in actual operational use-cases, these labels may be weak in quantity, quality or trustworthiness. We propose a benchmark to evaluate the natural robustness of different algorithms taken from various paradigms on artificially corrupted datasets, with a focus on noisy labels. This paper studies the intrinsic robustness of some leading classifiers. The algorithms under scrutiny include SVM, logistic regression, random forests, XGBoost, Khiops. Furthermore, building on results from recent literature, the study is supplemented with an investigation into the opportunity to enhance some algorithms with symmetric loss functions.
We study the robustness of classifiers to various kinds of random noise models. In particular, we consider noise drawn uniformly from the $ell_p$ ball for $p in [1, infty]$ and Gaussian noise with an arbitrary covariance matrix. We characterize this
Several recent works have shown that state-of-the-art classifiers are vulnerable to worst-case (i.e., adversarial) perturbations of the datapoints. On the other hand, it has been empirically observed that these same classifiers are relatively robust
Despite apparent human-level performances of deep neural networks (DNN), they behave fundamentally differently from humans. They easily change predictions when small corruptions such as blur and noise are applied on the input (lack of robustness), an
This paper investigates the theory of robustness against adversarial attacks. We focus on randomized classifiers (emph{i.e.} classifiers that output random variables) and provide a thorough analysis of their behavior through the lens of statistical l
The utilisation of Deep Learning (DL) is advancing into increasingly more sophisticated applications. While it shows great potential to provide transformational capabilities, DL also raises new challenges regarding its reliability in critical functio