ترغب بنشر مسار تعليمي؟ اضغط هنا

CP Degeneracy in Tensor Regression

120   0   0.0 ( 0 )
 نشر من قبل Kejun He
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Tensor linear regression is an important and useful tool for analyzing tensor data. To deal with high dimensionality, CANDECOMP/PARAFAC (CP) low-rank constraints are often imposed on the coefficient tensor parameter in the (penalized) $M$-estimation. However, we show that the corresponding optimization may not be attainable, and when this happens, the estimator is not well-defined. This is closely related to a phenomenon, called CP degeneracy, in low-rank tensor approximation problems. In this article, we provide useful results of CP degeneracy in tensor regression problems. In addition, we provide a general penalized strategy as a solution to overcome CP degeneracy. The asymptotic properties of the resulting estimation are also studied. Numerical experiments are conducted to illustrate our findings.

قيم البحث

اقرأ أيضاً

Random forest (RF) methodology is one of the most popular machine learning techniques for prediction problems. In this article, we discuss some cases where random forests may suffer and propose a novel generalized RF method, namely regression-enhance d random forests (RERFs), that can improve on RFs by borrowing the strength of penalized parametric regression. The algorithm for constructing RERFs and selecting its tuning parameters is described. Both simulation study and real data examples show that RERFs have better predictive performance than RFs in important situations often encountered in practice. Moreover, RERFs may incorporate known relationships between the response and the predictors, and may give reliable predictions in extrapolation problems where predictions are required at points out of the domain of the training dataset. Strategies analogous to those described here can be used to improve other machine learning methods via combination with penalized parametric regression techniques.
We introduce a novel rule-based approach for handling regression problems. The new methodology carries elements from two frameworks: (i) it provides information about the uncertainty of the parameters of interest using Bayesian inference, and (ii) it allows the incorporation of expert knowledge through rule-based systems. The blending of those two different frameworks can be particularly beneficial for various domains (e.g. engineering), where, even though the significance of uncertainty quantification motivates a Bayesian approach, there is no simple way to incorporate researcher intuition into the model. We validate our models by applying them to synthetic applications: a simple linear regression problem and two more complex structures based on partial differential equations. Finally, we review the advantages of our methodology, which include the simplicity of the implementation, the uncertainty reduction due to the added information and, in some occasions, the derivation of better point predictions, and we address limitations, mainly from the computational complexity perspective, such as the difficulty in choosing an appropriate algorithm and the added computational burden.
This paper proposes a fast and accurate method for sparse regression in the presence of missing data. The underlying statistical model encapsulates the low-dimensional structure of the incomplete data matrix and the sparsity of the regression coeffic ients, and the proposed algorithm jointly learns the low-dimensional structure of the data and a linear regressor with sparse coefficients. The proposed stochastic optimization method, Sparse Linear Regression with Missing Data (SLRM), performs an alternating minimization procedure and scales well with the problem size. Large deviation inequalities shed light on the impact of the various problem-dependent parameters on the expected squared loss of the learned regressor. Extensive simulations on both synthetic and real datasets show that SLRM performs better than competing algorithms in a variety of contexts.
In biomedical research, many different types of patient data can be collected, such as various types of omics data and medical imaging modalities. Applying multi-view learning to these different sources of information can increase the accuracy of med ical classification models compared with single-view procedures. However, collecting biomedical data can be expensive and/or burdening for patients, so that it is important to reduce the amount of required data collection. It is therefore necessary to develop multi-view learning methods which can accurately identify those views that are most important for prediction. In recent years, several biomedical studies have used an approach known as multi-view stacking (MVS), where a model is trained on each view separately and the resulting predictions are combined through stacking. In these studies, MVS has been shown to increase classification accuracy. However, the MVS framework can also be used for selecting a subset of important views. To study the view selection potential of MVS, we develop a special case called stacked penalized logistic regression (StaPLR). Compared with existing view-selection methods, StaPLR can make use of faster optimization algorithms and is easily parallelized. We show that nonnegativity constraints on the parameters of the function which combines the views play an important role in preventing unimportant views from entering the model. We investigate the performance of StaPLR through simulations, and consider two real data examples. We compare the performance of StaPLR with an existing view selection method called the group lasso and observe that, in terms of view selection, StaPLR is often more conservative and has a consistently lower false positive rate.
Models like LASSO and ridge regression are extensively used in practice due to their interpretability, ease of use, and strong theoretical guarantees. Cross-validation (CV) is widely used for hyperparameter tuning in these models, but do practical op timization methods minimize the true out-of-sample loss? A recent line of research promises to show that the optimum of the CV loss matches the optimum of the out-of-sample loss (possibly after simple corrections). It remains to show how tractable it is to minimize the CV loss. In the present paper, we show that, in the case of ridge regression, the CV loss may fail to be quasiconvex and thus may have multiple local optima. We can guarantee that the CV loss is quasiconvex in at least one case: when the spectrum of the covariate matrix is nearly flat and the noise in the observed responses is not too high. More generally, we show that quasiconvexity status is independent of many properties of the observed data (response norm, covariate-matrix right singular vectors and singular-value scaling) and has a complex dependence on the few that remain. We empirically confirm our theory using simulated experiments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا