ﻻ يوجد ملخص باللغة العربية
We study the problem of learning similarity by using nonlinear embedding models (e.g., neural networks) from all possible pairs. This problem is well-known for its difficulty of training with the extreme number of pairs. For the special case of using linear embeddings, many studies have addressed this issue of handling all pairs by considering certain loss functions and developing efficient optimization algorithms. This paper aims to extend results for general nonlinear embeddings. First, we finish detailed derivations and provide clean formulations for efficiently calculating some building blocks of optimization algorithms such as function, gradient evaluation, and Hessian-vector product. The result enables the use of many optimization methods for extreme similarity learning with nonlinear embeddings. Second, we study some optimization methods in detail. Due to the use of nonlinear embeddings, implementation issues different from linear cases are addressed. In the end, some methods are shown to be highly efficient for extreme similarity learning with nonlinear embeddings.
In the low-rank matrix completion (LRMC) problem, the low-rank assumption means that the columns (or rows) of the matrix to be completed are points on a low-dimensional linear algebraic variety. This paper extends this thinking to cases where the col
Deep semi-supervised learning has been widely implemented in the real-world due to the rapid development of deep learning. Recently, attention has shifted to the approaches such as Mean-Teacher to penalize the inconsistency between two perturbed inpu
In real-world classification problems, pairwise supervision (i.e., a pair of patterns with a binary label indicating whether they belong to the same class or not) can often be obtained at a lower cost than ordinary class labels. Similarity learning i
We propose a probabilistic kernel approach for preferential learning from pairwise duelling data using Gaussian Processes. Different from previous methods, we do not impose a total order on the item space, hence can capture more expressive latent pre
Weakly supervised learning has drawn considerable attention recently to reduce the expensive time and labor consumption of labeling massive data. In this paper, we investigate a novel weakly supervised learning problem of learning from similarity-con