ﻻ يوجد ملخص باللغة العربية
The spin susceptibility in pure neutron matter is computed from auxiliary field diffusion Monte Carlo calculations over a wide range of densities. The calculations are performed for different spin asymmetries, while using twist-averaged boundary conditions to reduce finite-size effects. The employed nuclear interactions include both the phenomenological Argonne AV8$^prime$+UIX potential and local interactions that are derived from chiral effective field theory up to next-to-next-to-leading order.
The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the ground
We compute the matrix elements for elastic scattering of dark matter (DM) particles off light nuclei ($^2$H, $^3$H, $^3$He, $^4$He and $^6$Li) using quantum Monte Carlo methods. We focus on scalar-mediated DM-nucleus interactions and use scalar curre
Quantum Monte Carlo methods are powerful numerical tools to accurately solve the Schrodinger equation for nuclear systems, a necessary step to describe the structure and reactions of nuclei and nucleonic matter starting from realistic interactions an
In the last years auxiliary field diffusion Monte Carlo has been used to assess the properties of hypernuclear systems, from light- to medium-heavy hypernuclei and hyper-neutron matter. One of the main findings is the key role played by the three-bod
Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field t