ترغب بنشر مسار تعليمي؟ اضغط هنا

Enriching Under-Represented Named-Entities To Improve Speech Recognition Performance

66   0   0.0 ( 0 )
 نشر من قبل Tingzhi Mao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic speech recognition (ASR) for under-represented named-entity (UR-NE) is challenging due to such named-entities (NE) have insufficient instances and poor contextual coverage in the training data to learn reliable estimates and representations. In this paper, we propose approaches to enriching UR-NEs to improve speech recognition performance. Specifically, our first priority is to ensure those UR-NEs to appear in the word lattice if there is any. To this end, we make exemplar utterances for those UR-NEs according to their categories (e.g. location, person, organization, etc.), ending up with an improved language model (LM) that boosts the UR-NE occurrence in the word lattice. With more UR-NEs appearing in the lattice, we then boost the recognition performance through lattice rescoring methods. We first enrich the representations of UR-NEs in a pre-trained recurrent neural network LM (RNNLM) by borrowing the embedding representations of the rich-represented NEs (RR-NEs), yielding the lattices that statistically favor the UR-NEs. Finally, we directly boost the likelihood scores of the utterances containing UR-NEs and gain further performance improvement.

قيم البحث

اقرأ أيضاً

Automatic Speech Recognition (ASR) systems have proliferated over the recent years to the point that free platforms such as YouTube now provide speech recognition services. Given the wide selection of ASR systems, we contribute to the field of automa tic speech recognition by comparing the relative performance of two sets of manual transcriptions and five sets of automatic transcriptions (Google Cloud, IBM Watson, Microsoft Azure, Trint, and YouTube) to help researchers to select accurate transcription services. In addition, we identify nonverbal behaviors that are associated with unintelligible speech, as indicated by high word error rates. We show that manual transcriptions remain superior to current automatic transcriptions. Amongst the automatic transcription services, YouTube offers the most accurate transcription service. For non-verbal behavioral involvement, we provide evidence that the variability of smile intensities from the listener is high (low) when the speaker is clear (unintelligible). These findings are derived from videoconferencing interactions between student doctors and simulated patients; therefore, we contribute towards both the ASR literature and the healthcare communication skills teaching community.
Speech emotion recognition is a crucial problem manifesting in a multitude of applications such as human computer interaction and education. Although several advancements have been made in the recent years, especially with the advent of Deep Neural N etworks (DNN), most of the studies in the literature fail to consider the semantic information in the speech signal. In this paper, we propose a novel framework that can capture both the semantic and the paralinguistic information in the signal. In particular, our framework is comprised of a semantic feature extractor, that captures the semantic information, and a paralinguistic feature extractor, that captures the paralinguistic information. Both semantic and paraliguistic features are then combined to a unified representation using a novel attention mechanism. The unified feature vector is passed through a LSTM to capture the temporal dynamics in the signal, before the final prediction. To validate the effectiveness of our framework, we use the popular SEWA dataset of the AVEC challenge series and compare with the three winning papers. Our model provides state-of-the-art results in the valence and liking dimensions.
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a nov el online E2E-ASR system by using Streaming Chunk-Aware Multihead Attention(SCAMA) and a latency control memory equipped self-attention network (LC-SAN-M). LC-SAN-M uses chunk-level input to control the latency of encoder. As to SCAMA, a jointly trained predictor is used to control the output of encoder when feeding to decoder, which enables decoder to generate output in streaming manner. Experimental results on the open 170-hour AISHELL-1 and an industrial-level 20000-hour Mandarin speech recognition tasks show that our approach can significantly outperform the MoChA-based baseline system under comparable setup. On the AISHELL-1 task, our proposed method achieves a character error rate (CER) of 7.39%, to the best of our knowledge, which is the best published performance for online ASR.
End-to-end speech recognition has become popular in recent years, since it can integrate the acoustic, pronunciation and language models into a single neural network. Among end-to-end approaches, attention-based methods have emerged as being superior . For example, Transformer, which adopts an encoder-decoder architecture. The key improvement introduced by Transformer is the utilization of self-attention instead of recurrent mechanisms, enabling both encoder and decoder to capture long-range dependencies with lower computational complexity.In this work, we propose boosting the self-attention ability with a DFSMN memory block, forming the proposed memory equipped self-attention (SAN-M) mechanism. Theoretical and empirical comparisons have been made to demonstrate the relevancy and complementarity between self-attention and the DFSMN memory block. Furthermore, the proposed SAN-M provides an efficient mechanism to integrate these two modules. We have evaluated our approach on the public AISHELL-1 benchmark and an industrial-level 20,000-hour Mandarin speech recognition task. On both tasks, SAN-M systems achieved much better performance than the self-attention based Transformer baseline system. Specially, it can achieve a CER of 6.46% on the AISHELL-1 task even without using any external LM, comfortably outperforming other state-of-the-art systems.
Generative adversarial networks (GANs) have shown potential in learning emotional attributes and generating new data samples. However, their performance is usually hindered by the unavailability of larger speech emotion recognition (SER) data. In thi s work, we propose a framework that utilises the mixup data augmentation scheme to augment the GAN in feature learning and generation. To show the effectiveness of the proposed framework, we present results for SER on (i) synthetic feature vectors, (ii) augmentation of the training data with synthetic features, (iii) encoded features in compressed representation. Our results show that the proposed framework can effectively learn compressed emotional representations as well as it can generate synthetic samples that help improve performance in within-corpus and cross-corpus evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا