ﻻ يوجد ملخص باللغة العربية
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a novel online E2E-ASR system by using Streaming Chunk-Aware Multihead Attention(SCAMA) and a latency control memory equipped self-attention network (LC-SAN-M). LC-SAN-M uses chunk-level input to control the latency of encoder. As to SCAMA, a jointly trained predictor is used to control the output of encoder when feeding to decoder, which enables decoder to generate output in streaming manner. Experimental results on the open 170-hour AISHELL-1 and an industrial-level 20000-hour Mandarin speech recognition tasks show that our approach can significantly outperform the MoChA-based baseline system under comparable setup. On the AISHELL-1 task, our proposed method achieves a character error rate (CER) of 7.39%, to the best of our knowledge, which is the best published performance for online ASR.
End-to-end speech recognition has become popular in recent years, since it can integrate the acoustic, pronunciation and language models into a single neural network. Among end-to-end approaches, attention-based methods have emerged as being superior
End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are
In this paper, we present a novel two-pass approach to unify streaming and non-streaming end-to-end (E2E) speech recognition in a single model. Our model adopts the hybrid CTC/attention architecture, in which the conformer layers in the encoder are m
In this paper, we present a streaming end-to-end speech recognition model based on Monotonic Chunkwise Attention (MoCha) jointly trained with enhancement layers. Even though the MoCha attention enables streaming speech recognition with recognition ac
This paper presents a unified end-to-end frame-work for both streaming and non-streamingspeech translation. While the training recipes for non-streaming speech translation have been mature, the recipes for streaming speechtranslation are yet to be bu