ﻻ يوجد ملخص باللغة العربية
Forecasting the imminent catastrophic failure has a high importance for a large variety of systems from the collapse of engineering constructions, through the emergence of landslides and earthquakes, to volcanic eruptions. Failure forecast methods predict the lifetime of the system based on the time-to-failure power law of observables describing the final acceleration towards failure. We show that the statistics of records of the event series of breaking bursts, accompanying the failure process, provides a powerful tool to detect the onset of acceleration, as an early warning of the impending catastrophe. We focus on the fracture of heterogeneous materials using a fiber bundle model, which exhibits transitions between perfectly brittle, quasi-brittle, and ductile behaviors as the amount of disorder is increased. Analyzing the lifetime of record size bursts, we demonstrate that the acceleration starts at a characteristic record rank, below which record breaking slows down due to the dominance of disorder in fracturing, while above it stress redistribution gives rise to an enhanced triggering of bursts and acceleration of the dynamics. The emergence of this signal depends on the degree of disorder making both highly brittle fracture of low disorder materials, and ductile fracture of strongly disordered ones, unpredictable.
An accurate understanding of the interplay between random and deterministic processes in generating extreme events is of critical importance in many fields, from forecasting extreme meteorological events to the catastrophic failure of materials and i
We study the statistics of avalanches, as a response to an applied force, undergone by a particle hopping on a one dimensional lattice where the pinning forces at each site are independent and identically distributed (I.I.D), each drawn from a contin
We investigate site percolation in a hierarchical scale-free network known as the Dorogovtsev- Goltsev-Mendes network. We use the generating function method to show that the percolation threshold is 1, i.e., the system is not in the percolating phase
A glacier table consists of a rock supported by a slender column of ice and form naturally on glaciers. We investigate the onset of their formation at a smaller scale in a controlled environment. Depending on the size and thermal conductivity of a ca
We investigate the scaling properties of the sources of crackling noise in a fully-dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly-sized spherical p