ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Chaos and the Correspondence Principle

346   0   0.0 ( 0 )
 نشر من قبل Jiaozi Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The correspondence principle is a cornerstone in the entire construction of quantum mechanics. This principle has been recently challenged by the observation of an early-time exponential increase of the out-of-time-ordered correlator (OTOC) in classically non-chaotic systems [E.B. Rozenbaum et al., Phys. Rev. Lett. 125, 014101 (2020)], Here we show that the correspondence principle is restored after a proper treatment of the singular points. Furthermore our results show that the OTOC maintains its role as a diagnostic of chaotic dynamics.



قيم البحث

اقرأ أيضاً

99 - Chushun Tian , Kun Yang 2021
The {it exchange} interaction arising from the particle indistinguishability is of central importance to physics of many-particle quantum systems. Here we study analytically the dynamical generation of quantum entanglement induced by this interaction in an isolated system, namely, an ideal Fermi gas confined in a chaotic cavity, which evolves unitarily from a non-Gaussian pure state. We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure. Furthermore, for a class of initial states, such change leads to the approach to thermal equilibrium everywhere in the cavity, with the well-known Ehrenfest time in quantum chaos as the thermalization time. Specifically, the quantum expectation values of various correlation functions at different spatial scales are all determined by the Fermi-Dirac distribution. In addition, by using the reduced density matrix (RDM) and the entanglement entropy (EE) as local probes, we find that the gas inside a subsystem is at equilibrium with that outside, and its thermal entropy is the EE, even though the whole system is in a pure state. As a by-product of this work, we provide an analytical solution supporting an important conjecture on thermalization, made and numerically studied by Garrison and Grover in: Phys. Rev. X textbf{8}, 021026 (2018), and strengthen its statement.
Open quantum systems can exhibit complex states, which classification and quantification is still not well resolved. The Kerr-nonlinear cavity, periodically modulated in time by coherent pumping of the intra-cavity photonic mode, is one of the exampl es. Unraveling the corresponding Markovian master equation into an ensemble of quantum trajectories and employing the recently proposed calculation of quantum Lyapunov exponents [I.I. Yusipov {it et al.}, Chaos {bf 29}, 063130 (2019)], we identify `chaotic and `regular regimes there. In particular, we show that chaotic regimes manifest an intermediate power-law asymptotics in the distribution of photon waiting times. This distribution can be retrieved by monitoring photon emission with a single-photon detector, so that chaotic and regular states can be discriminated without disturbing the intra-cavity dynamics.
84 - Chushun Tian , Kun Yang , 2016
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical de velopments of manybody localization in disordered interacting systems. The proposal of (many-body) eigenstate thermalization (ET) for these systems reinforces the common belief that either interaction or extrinsic randomness is required for thermalization. Here, we unveil a quantum thermalization mechanism challenging this belief. We find that, provided one-body quantum chaos is present, as a pure many-body state evolves the arrow of time can emerge, even without interaction or randomness. In times much larger than the Ehrenfest time that signals the breakdown of quantum-classical correspondence, quantum chaotic motion leads to thermal [Fermi-Dirac (FD) or Bose-Einstein (BE)] distributions and thermodynamics in individual eigenstates. Our findings lay dynamical foundation of statistical mechanics and thermodynamics of isolated quantum systems.
We map the infinite-range coupled quantum kicked rotors over an infinite-range coupled interacting bosonic model. In this way we can apply exact diagonalization up to quite large system sizes and confirm that the system tends to ergodicity in the lar ge-size limit. In the thermodynamic limit the system is described by a set of coupled Gross-Pitaevskij equations equivalent to an effective nonlinear single-rotor Hamiltonian. These equations give rise to a power-law increase in time of the energy with exponent $gammasim 2/3$ in a wide range of parameters. We explain this finding by means of a master-equation approach based on the noisy behaviour of the effective nonlinear single-rotor Hamiltonian and on the Anderson localization of the single-rotor Floquet states. Furthermore, we study chaos by means of the largest Lyapunov exponent and find that it decreases towards zero for portions of the phase space with increasing momentum. Finally, we show that some stroboscopic Floquet integrals of motion of the noninteracting dynamics deviate from their initial values over a time scale related to the interaction strength according to the Nekhoroshev theorem.
149 - Bin Yan , Wissam Chemissany 2020
This article tackles a fundamental long-standing problem in quantum chaos, namely, whether quantum chaotic systems can exhibit sensitivity to initial conditions, in a form that directly generalizes the notion of classical chaos in phase space. We dev elop a linear response theory for complexity, and demonstrate that the complexity can exhibit exponential sensitivity in response to perturbations of initial conditions for chaotic systems. Two immediate significant results follows: i) the complexity linear response matrix gives rise to a spectrum that fully recovers the Lyapunov exponents in the classical limit, and ii) the linear response of complexity is given by the out-of-time order correlators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا