ﻻ يوجد ملخص باللغة العربية
Driven by massive amounts of data and important advances in computational resources, new deep learning systems have achieved outstanding results in a large spectrum of applications. Nevertheless, our current theoretical understanding on the mathematical foundations of deep learning lags far behind its empirical success. Towards solving the vulnerability of neural networks, however, the field of adversarial robustness has recently become one of the main sources of explanations of our deep models. In this article, we provide an in-depth review of the field of adversarial robustness in deep learning, and give a self-contained introduction to its main notions. But, in contrast to the mainstream pessimistic perspective of adversarial robustness, we focus on the main positive aspects that it entails. We highlight the intuitive connection between adversarial examples and the geometry of deep neural networks, and eventually explore how the geometric study of adversarial examples can serve as a powerful tool to understand deep learning. Furthermore, we demonstrate the broad applicability of adversarial robustness, providing an overview of the main emerging applications of adversarial robustness beyond security. The goal of this article is to provide readers with a set of new perspectives to understand deep learning, and to supply them with intuitive tools and insights on how to use adversarial robustness to improve it.
Contrastive learning (CL) has recently emerged as an effective approach to learning representation in a range of downstream tasks. Central to this approach is the selection of positive (similar) and negative (dissimilar) sets to provide the model the
Deep Metric Learning (DML), a widely-used technique, involves learning a distance metric between pairs of samples. DML uses deep neural architectures to learn semantic embeddings of the input, where the distance between similar examples is small whil
We focus on the use of proxy distributions, i.e., approximations of the underlying distribution of the training dataset, in both understanding and improving the adversarial robustness in image classification. While additional training data helps in a
This tutorial aims to introduce the fundamentals of adversarial robustness of deep learning, presenting a well-structured review of up-to-date techniques to assess the vulnerability of various types of deep learning models to adversarial examples. Th
Model-agnostic meta-learning (MAML) has emerged as one of the most successful meta-learning techniques in few-shot learning. It enables us to learn a meta-initialization} of model parameters (that we call meta-model) to rapidly adapt to new tasks usi