ﻻ يوجد ملخص باللغة العربية
We present the results of a non-perturbative determination of the improvement coefficient $c_mathrm{V}$ and the renormalisation factor $Z_mathrm{V}$, which define the renormalised vector current in three-flavour $mathrm{O}(a)$ improved lattice QCD with Wilson quarks and tree-level Symanzik-improved gauge action. In case of the improvement coefficient, we consider both lattice descriptions of the vector current, the local as well as the conserved (i.e., point-split) one. Our improvement and normalisation conditions are based on massive chiral Ward identities and numerically evaluated in the Schrodinger functional setup, which allows to eliminate finite quark mass effects in a controlled way. In order to ensure a smooth dependence of the renormalisation constant and improvement coefficients on the bare gauge coupling, our computation proceeds along a line of constant physics, covering the typical range of lattice spacings $0.04,mathrm{fm}lesssim alesssim 0.1,mathrm{fm}$ that is useful for phenomenological applications. Especially for the improvement coefficient of the local vector current, we report significant differences between the one-loop perturbative estimates and our non-perturbative results.
We present simulation details and results for the light hadron spectrum in N f = 2 + 1 lattice QCD with the nonperturbatively O(a)-improved Wilson quark action and the Iwasaki gauge action. Simulations are carried out at a lattice spacing of 0.09 fm
We apply chiral perturbation theory to the pseudoscalar meson mass and decay constant data obtained in the PACS-CS Project toward 2+1 flavor lattice QCD simulations with the O(a)-improved Wilson quarks. We examine the existence of chiral logarithms i
We determine the non-perturbatively renormalized axial current for O($a$) improved lattice QCD with Wilson quarks. Our strategy is based on the chirally rotated Schrodinger functional and can be generalized to other finite (ratios of) renormalization
We report on a calculation of the light hadron spectrum and quark masses in three-flavor dynamical QCD using the non-perturbatively O(a)-improved Wilson quark action and a renormalization-group improved gauge action. Simulations are carried out on a
We present an exact dynamical QCD simulation algorithm for the $O(a)$-improved Wilson fermion with odd number of flavors. Our algorithm is an extension of the non-Hermitian polynomials HMC algorithm proposed by Takaishi and de Forcrand previously. In