ﻻ يوجد ملخص باللغة العربية
Tremendous progress has been witnessed in artificial intelligence, where neural network backed deep learning systems have been used, with applications in almost every domain. As a representative deep learning framework, Generative Adversarial Network (GAN) has been widely used for generating artificial images, text-to-image or image augmentation across areas of science, arts and video games. However, GANs are computationally expensive, sometimes computationally prohibitive. Furthermore, training GANs may suffer from convergence failure and modal collapse. Aiming at the acceleration of use cases for practical quantum computers, we propose QuGAN, a quantum GAN architecture that provides stable convergence, quantum-states based gradients and significantly reduced parameter sets. The QuGANarchitecture runs both the discriminator and the generator purely on quantum state fidelity and utilizes the swap test on qubits to calculate the values of quantum-based loss functions. Built on quantum layers, QuGAN achieves similar performance with a 94.98% reduction on the parameter set when compared to classical GANs. With the same number of parameters, addition-ally, QuGAN outperforms state-of-the-art quantum based GANsin the literature providing a 48.33% improvement in system performance compared to others attaining less than 0.5% in terms of similarity between generated distributions and original data sets.
Quantum machine learning has recently attracted much attention from the community of quantum computing. In this paper, we explore the ability of generative adversarial networks (GANs) based on quantum computing. More specifically, we propose a quantu
Generative adversarial networks are an emerging technique with wide applications in machine learning, which have achieved dramatic success in a number of challenging tasks including image and video generation. When equipped with quantum processors, t
Generative adversarial networks (GANs) are one of the most widely adopted semisupervised and unsupervised machine learning methods for high-definition image, video, and audio generation. In this work, we propose a new type of architecture for quantum
Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning---a subfield of artificial intelligence that is currently driving a revolution in many aspects of modern society. It has shown splendid performance i
The idea that spacetime geometry is built from quantum entanglement has been widely accepted in the last years. But how exactly the geometry is related with quantum states is still unclear. In this note, based on the idea of deep learning, we propose