ﻻ يوجد ملخص باللغة العربية
Publicly available, large pretrained LanguageModels (LMs) generate text with remarkable quality, but only sequentially from left to right. As a result, they are not immediately applicable to generation tasks that break the unidirectional assumption, such as paraphrasing or text-infilling, necessitating task-specific supervision. In this paper, we present Reflective Decoding, a novel unsupervised algorithm that allows for direct application of unidirectional LMs to non-sequential tasks. Our 2-step approach requires no supervision or even parallel corpora, only two off-the-shelf pretrained LMs in opposite directions: forward and backward. First, in the contextualization step, we use LMs to generate ensembles of past and future contexts which collectively capture the input (e.g. the source sentence for paraphrasing). Second, in the reflection step, we condition on these context ensembles, generating outputs that are compatible with them. Comprehensive empirical results demonstrate that Reflective Decoding outperforms strong unsupervised baselines on both paraphrasing and abductive text infilling, significantly narrowing the gap between unsupervised and supervised methods. Reflective Decoding surpasses multiple supervised baselines on various metrics including human evaluation.
While conditional language models have greatly improved in their ability to output high-quality natural language, many NLP applications benefit from being able to generate a diverse set of candidate sequences. Diverse decoding strategies aim to, with
Non-autoregressive generation (NAG) has recently attracted great attention due to its fast inference speed. However, the generation quality of existing NAG models still lags behind their autoregressive counterparts. In this work, we show that BERT ca
Large-scale language models (LMs) pretrained on massive corpora of text, such as GPT-2, are powerful open-domain text generators. However, as our systematic examination reveals, it is still challenging for such models to generate coherent long passag
For open-ended language generation tasks such as storytelling and dialogue, choosing the right decoding algorithm is critical to controlling the tradeoff between generation quality and diversity. However, there presently exists no consensus on which
This paper studies how to automatically generate a natural language text that describes the facts in knowledge graph (KG). Considering the few-shot setting, we leverage the excellent capacities of pretrained language models (PLMs) in language underst