ترغب بنشر مسار تعليمي؟ اضغط هنا

Trading Off Diversity and Quality in Natural Language Generation

98   0   0.0 ( 0 )
 نشر من قبل Hugh Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For open-ended language generation tasks such as storytelling and dialogue, choosing the right decoding algorithm is critical to controlling the tradeoff between generation quality and diversity. However, there presently exists no consensus on which decoding procedure is best or even the criteria by which to compare them. We address these issues by casting decoding as a multi-objective optimization problem aiming to simultaneously maximize both response quality and diversity. Our framework enables us to perform the first large-scale evaluation of decoding methods along the entire quality-diversity spectrum. We find that when diversity is a priority, all methods perform similarly, but when quality is viewed as more important, the recently proposed nucleus sampling (Holtzman et al. 2019) outperforms all other evaluated decoding algorithms. Our experiments also confirm the existence of the `likelihood trap, the counter-intuitive observation that high likelihood sequences are often surprisingly low quality. We leverage our findings to create and evaluate an algorithm called emph{selective sampling} which tractably approximates globally-normalized temperature sampling.



قيم البحث

اقرأ أيضاً

In Natural Language Generation (NLG), End-to-End (E2E) systems trained through deep learning have recently gained a strong interest. Such deep models need a large amount of carefully annotated data to reach satisfactory performance. However, acquirin g such datasets for every new NLG application is a tedious and time-consuming task. In this paper, we propose a semi-supervised deep learning scheme that can learn from non-annotated data and annotated data when available. It uses an NLG and a Natural Language Understanding (NLU) sequence-to-sequence models which are learned jointly to compensate for the lack of annotation. Experiments on two benchmark datasets show that, with limited amount of annotated data, the method can achieve very competitive results while not using any pre-processing or re-scoring tricks. These findings open the way to the exploitation of non-annotated datasets which is the current bottleneck for the E2E NLG system development to new applications.
An interpretable system for open-domain reasoning needs to express its reasoning process in a transparent form. Natural language is an attractive representation for this purpose -- it is both highly expressive and easy for humans to understand. Howev er, manipulating natural language statements in logically consistent ways is hard: models must cope with variation in how meaning is expressed while remaining precise. In this paper, we describe ParaPattern, a method for building models to generate deductive inferences from diverse natural language inputs without direct human supervision. We train BART-based models (Lewis et al., 2020) to generate the result of applying a particular logical operation to one or more premise statements. Crucially, we develop a largely automated pipeline for constructing suitable training examples from Wikipedia. We evaluate our models using out-of-domain sentence compositions from the QASC (Khot et al., 2020) and EntailmentBank (Dalvi et al., 2021) datasets as well as targeted perturbation sets. Our results show that our models are substantially more accurate and flexible than baseline systems. ParaPattern achieves 85% validity on examples of the substitution operation from EntailmentBank without the use of any in-domain training data, matching the performance of a model fine-tuned for EntailmentBank. The full source code for our method is publicly available.
111 - Li Dong , Nan Yang , Wenhui Wang 2019
This paper presents a new Unified pre-trained Language Model (UniLM) that can be fine-tuned for both natural language understanding and generation tasks. The model is pre-trained using three types of language modeling tasks: unidirectional, bidirecti onal, and sequence-to-sequence prediction. The unified modeling is achieved by employing a shared Transformer network and utilizing specific self-attention masks to control what context the prediction conditions on. UniLM compares favorably with BERT on the GLUE benchmark, and the SQuAD 2.0 and CoQA question answering tasks. Moreover, UniLM achieves new state-of-the-art results on five natural language generation datasets, including improving the CNN/DailyMail abstractive summarization ROUGE-L to 40.51 (2.04 absolute improvement), the Gigaword abstractive summarization ROUGE-L to 35.75 (0.86 absolute improvement), the CoQA generative question answering F1 score to 82.5 (37.1 absolute improvement), the SQuAD question generation BLEU-4 to 22.12 (3.75 absolute improvement), and the DSTC7 document-grounded dialog response generation NIST-4 to 2.67 (human performance is 2.65). The code and pre-trained models are available at https://github.com/microsoft/unilm.
435 - Chun Fan , Xiaoya Li , Yuxian Meng 2021
The frustratingly fragile nature of neural network models make current natural language generation (NLG) systems prone to backdoor attacks and generate malicious sequences that could be sexist or offensive. Unfortunately, little effort has been inves ted to how backdoor attacks can affect current NLG models and how to defend against these attacks. In this work, we investigate this problem on two important NLG tasks, machine translation and dialogue generation. By giving a formal definition for backdoor attack and defense, and developing corresponding benchmarks, we design methods to attack NLG models, which achieve high attack success to ask NLG models to generate malicious sequences. To defend against these attacks, we propose to detect the attack trigger by examining the effect of deleting or replacing certain words on the generation outputs, which we find successful for certain types of attacks. We will discuss the limitation of this work, and hope this work can raise the awareness of backdoor risks concealed in deep NLG systems. (Code and data are available at https://github.com/ShannonAI/backdoor_nlg.)
Natural language generation (NLG) systems are commonly evaluated using n-gram overlap measures (e.g. BLEU, ROUGE). These measures do not directly capture semantics or speaker intentions, and so they often turn out to be misaligned with our true goals for NLG. In this work, we argue instead for communication-based evaluations: assuming the purpose of an NLG system is to convey information to a reader/listener, we can directly evaluate its effectiveness at this task using the Rational Speech Acts model of pragmatic language use. We illustrate with a color reference dataset that contains descriptions in pre-defined quality categories, showing that our method better aligns with these quality categories than do any of the prominent n-gram overlap methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا