ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of 3D-ordering by defects in the $S=1/2$ frustrated chain magnet LiCuVO$_4$

209   0   0.0 ( 0 )
 نشر من قبل Sergey Sosin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a heat capacity study of high quality single crystal samples of lcvo -- a frustrated spin $S=1/2$ chain system -- in magnetic field amounting to 3/4 of the saturation field. At low fields up to about 7~T, a linear temperature dependence of the specific heat, $C_ppropto T$, resulting from 1D magnetic correlations in the spin chains is followed upon cooling by a sharp lambda anomaly of the transition into a 3D helical phase with $C_ppropto T^3$ behavior at low temperature. The transition from a spin liquid into a spin-modulated (SM) phase at higher fields occurs via a hump-like anomaly which, as the temperature decreases further turns into a $C_ppropto T^2$ law distinctive for a quasi-2D system. We suggest an explanation for how nonmagnetic defects in the Cu$^{2+}$ chains can suppress 3D long-range ordering in the SM phase and leave it undisturbed in a helical phase.



قيم البحث

اقرأ أيضاً

We investigated the magnetoelastic properties of the quasi-one-dimensional spin-1/2 frustrated magnet LiCuVO$_4$. Longitudinal-magnetostriction experiments were performed at 1.5 K in high magnetic fields of up to 60 T applied along the $b$ axis, i.e. , the spin-chain direction. The magnetostriction data qualitatively resemble the magnetization results, and saturate at $H_{text{sat}} approx 54$ T, with a relative change in sample length of $Delta L/L approx 1.8times10^{-4}$. Remarkably, both the magnetostriction and the magnetization evolve gradually between $H_{text{c3}} approx 48$ T and $H_{text{sat}}$, indicating that the two quantities consistently detect the spin-nematic phase just below the saturation. Numerical analyses for a weakly coupled spin-chain model reveal that the observed magnetostriction can overall be understood within an exchange-striction mechanism. Small deviations found may indicate nontrivial changes in local correlations associated with the field-induced phase transitions.
We present the results of the magnetization and dielectric constant measurements on untwinned single crystal samples of the frustrated S=1/2 chain cuprate LiCu_2O_2. Novel magnetic phase transitions were observed. A spin flop transition of the spiral spin plane was observed for the field orientations H||a,b. The second magnetic transition was observed at H~15 T for all three principal field directions. This high field magnetic phase is discussed as a collinear spin-modulated phase which is expected for an S=1/2 nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic chain system.
We study field induced quantum phase in weakly-coupled ferromagnetic frustrated chain LiCuVO$_4$ by neutron diffraction technique. A new incommensurate magnetic peak is observed at $H ge 8.5$ T. The field dependent propagation vector is identified wi th the spin density wave correlation in the theoretically predicted magnetic quadrupole order. Quantum fluctuation, geometrical frustration, and interchain interaction induce the exotic spin density wave long-range order in the insulating magnet.
We present the results of magnetization, ESR and NMR measurements on single crystal samples of the frustrated S=1/2 chain cuprate LiCu2O2 doped with nonmagnetic Zn^2+. As shown by the x-ray techniques the crystals of Li(Cu{1-x}Zn{x})2O2 with x<0.12 a re single-phase, whereas for higher Zn concentrations the samples were polyphase. ESR spectra for all monophase samples (0<= x<0.12) can be explained within the model of a planar spin structure with a uniaxial type anisotropy. The NMR spectra of the highly doped single crystal sample Li(Cu0.9Zn0.1)2O2 can be described in the frame of a planar spin glass like magnetic structure with short range spiral correlations in the crystal (ab)-planes with strongest exchange bonds. The value of magnetic moments of Cu^2+ ions in this structure is close to value obtained for undoped crystals: (0.8 +- 0.1) mu_B.
The magnetoelectric (ME) effects are investigated in a cubic compound SrCuTe2O6, in which uniform Cu2+ (S=1/2) spin chains with considerable spin frustration exhibit a concomitant antiferromagnetic transition and dielectric constant peak at TN=5.5 K. Pyroelectric Jp(T) and magnetoelectric current JME(H) measurements in the presence of a bias electric field are used to reveal that SrCuTe2O6 shows clear variations of Jp(T) across TN at constant magnetic fields. Furthermore, isothermal measurements of JME(H) also develop clear peaks at finite magnetic fields, of which traces are consistent with the spin-flop transitions observed in the magnetization studies. As a result, the anomalies observed in Jp(T) and JME(H) curves well match with the field-temperature phase diagram constructed from magnetization and dielectric constant measurements, demonstrating that SrCuTe2O6 is a new magnetoelectric compound with S=1/2 spin chains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا