ترغب بنشر مسار تعليمي؟ اضغط هنا

Using satellite imagery to understand and promote sustainable development

181   0   0.0 ( 0 )
 نشر من قبل Stefano Ermon
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate and comprehensive measurements of a range of sustainable development outcomes are fundamental inputs into both research and policy. We synthesize the growing literature that uses satellite imagery to understand these outcomes, with a focus on approaches that combine imagery with machine learning. We quantify the paucity of ground data on key human-related outcomes and the growing abundance and resolution (spatial, temporal, and spectral) of satellite imagery. We then review recent machine learning approaches to model-building in the context of scarce and noisy training data, highlighting how this noise often leads to incorrect assessment of models predictive performance. We quantify recent model performance across multiple sustainable development domains, discuss research and policy applications, explore constraints to future progress, and highlight key research directions for the field.

قيم البحث

اقرأ أيضاً

Approximately half of the global population does not have access to the internet, even though digital connectivity can reduce poverty by revolutionizing economic development opportunities. Due to a lack of data, Mobile Network Operators and governmen ts struggle to effectively determine if infrastructure investments are viable, especially in greenfield areas where demand is unknown. This leads to a lack of investment in network infrastructure, resulting in a phenomenon commonly referred to as the `digital divide`. In this paper we present a machine learning method that uses publicly available satellite imagery to predict telecoms demand metrics, including cell phone adoption and spending on mobile services, and apply the method to Malawi and Ethiopia. Our predictive machine learning approach consistently outperforms baseline models which use population density or nightlight luminosity, with an improvement in data variance prediction of at least 40%. The method is a starting point for developing more sophisticated predictive models of infrastructure demand using machine learning and publicly available satellite imagery. The evidence produced can help to better inform infrastructure investment and policy decisions.
Multi-spectral satellite imaging sensors acquire various spectral band images such as red (R), green (G), blue (B), near-infrared (N), etc. Thanks to the unique spectroscopic property of each spectral band with respective to the objects on the ground , multi-spectral satellite imagery can be used for various geological survey applications. Unfortunately, image artifacts from imaging sensor noises often affect the quality of scenes and have negative impacts on the applications of satellite imagery. Recently, deep learning approaches have been extensively explored for the removal of noises in satellite imagery. Most deep learning denoising methods, however, follow a supervised learning scheme, which requires matched noisy image and clean image pairs that are difficult to collect in real situations. In this paper, we propose a novel unsupervised multispectral denoising method for satellite imagery using wavelet subband cycle-consistent adversarial network (WavCycleGAN). The proposed method is based on unsupervised learning scheme using adversarial loss and cycle-consistency loss to overcome the lack of paired data. Moreover, in contrast to the standard image domain cycleGAN, we introduce a wavelet subband domain learning scheme for effective denoising without sacrificing high frequency components such as edges and detail information. Experimental results for the removal of vertical stripe and wave noises in satellite imaging sensors demonstrate that the proposed method effectively removes noises and preserves important high frequency features of satellite images.
The capabilities of autonomous flight with unmanned aerial vehicles (UAVs) have significantly increased in recent times. However, basic problems such as fast and robust geo-localization in GPS-denied environments still remain unsolved. Existing resea rch has primarily concentrated on improving the accuracy of localization at the cost of long and varying computation time in various situations, which often necessitates the use of powerful ground station machines. In order to make image-based geo-localization online and pragmatic for lightweight embedded systems on UAVs, we propose a framework that is reliable in changing scenes, flexible about computing resource allocation and adaptable to common camera placements. The framework is comprised of two stages: offline database preparation and online inference. At the first stage, color images and depth maps are rendered as seen from potential vehicle poses quantized over the satellite and topography maps of anticipated flying areas. A database is then populated with the global and local descriptors of the rendered images. At the second stage, for each captured real-world query image, top global matches are retrieved from the database and the vehicle pose is further refined via local descriptor matching. We present field experiments of image-based localization on two different UAV platforms to validate our results.
Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibil ity and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g. forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance.
Deep learning using neural networks has provided advances in image style transfer, merging the content of one image (e.g., a photo) with the style of another (e.g., a painting). Our research shows this concept can be extended to analyse the design of streetscapes in relation to health and wellbeing outcomes. An Australian population health survey (n=34,000) was used to identify the spatial distribution of health and wellbeing outcomes, including general health and social capital. For each outcome, the most and least desirable locations formed two domains. Streetscape design was sampled using around 80,000 Google Street View images per domain. Generative adversarial networks translated these images from one domain to the other, preserving the main structure of the input image, but transforming the `style from locations where self-reported health was bad to locations where it was good. These translations indicate that areas in Melbourne with good general health are characterised by sufficient green space and compactness of the urban environment, whilst streetscape imagery related to high social capital contained more and wider footpaths, fewer fences and more grass. Beyond identifying relationships, the method is a first step towards computer-generated design interventions that have the potential to improve population health and wellbeing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا