ترغب بنشر مسار تعليمي؟ اضغط هنا

Viewpoint-Aware Channel-Wise Attentive Network for Vehicle Re-Identification

226   0   0.0 ( 0 )
 نشر من قبل Tsai-Shien Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vehicle re-identification (re-ID) matches images of the same vehicle across different cameras. It is fundamentally challenging because the dramatically different appearance caused by different viewpoints would make the framework fail to match two vehicles of the same identity. Most existing works solved the problem by extracting viewpoint-aware feature via spatial attention mechanism, which, yet, usually suffers from noisy generated attention map or otherwise requires expensive keypoint labels to improve the quality. In this work, we propose Viewpoint-aware Channel-wise Attention Mechanism (VCAM) by observing the attention mechanism from a different aspect. Our VCAM enables the feature learning framework channel-wisely reweighing the importance of each feature maps according to the viewpoint of input vehicle. Extensive experiments validate the effectiveness of the proposed method and show that we perform favorably against state-of-the-arts methods on the public VeRi-776 dataset and obtain promising results on the 2020 AI City Challenge. We also conduct other experiments to demonstrate the interpretability of how our VCAM practically assists the learning framework.

قيم البحث

اقرأ أيضاً

Vehicle re-identification (Re-ID) is an active task due to its importance in large-scale intelligent monitoring in smart cities. Despite the rapid progress in recent years, most existing methods handle vehicle Re-ID task in a supervised manner, which is both time and labor-consuming and limits their application to real-life scenarios. Recently, unsupervised person Re-ID methods achieve impressive performance by exploring domain adaption or clustering-based techniques. However, one cannot directly generalize these methods to vehicle Re-ID since vehicle images present huge appearance variations in different viewpoints. To handle this problem, we propose a novel viewpoint-aware clustering algorithm for unsupervised vehicle Re-ID. In particular, we first divide the entire feature space into different subspaces according to the predicted viewpoints and then perform a progressive clustering to mine the accurate relationship among samples. Comprehensive experiments against the state-of-the-art methods on two multi-viewpoint benchmark datasets VeRi and VeRi-Wild validate the promising performance of the proposed method in both with and without domain adaption scenarios while handling unsupervised vehicle Re-ID.
Vehicle re-identification (re-ID) focuses on matching images of the same vehicle across different cameras. It is fundamentally challenging because differences between vehicles are sometimes subtle. While several studies incorporate spatial-attention mechanisms to help vehicle re-ID, they often require expensive keypoint labels or suffer from noisy attention mask if not trained with expensive labels. In this work, we propose a dedicated Semantics-guided Part Attention Network (SPAN) to robustly predict part attention masks for different views of vehicles given only image-level semantic labels during training. With the help of part attention masks, we can extract discriminative features in each part separately. Then we introduce Co-occurrence Part-attentive Distance Metric (CPDM) which places greater emphasis on co-occurrence vehicle parts when evaluating the feature distance of two images. Extensive experiments validate the effectiveness of the proposed method and show that our framework outperforms the state-of-the-art approaches.
Although great progress in supervised person re-identification (Re-ID) has been made recently, due to the viewpoint variation of a person, Re-ID remains a massive visual challenge. Most existing viewpoint-based person Re-ID methods project images fro m each viewpoint into separated and unrelated sub-feature spaces. They only model the identity-level distribution inside an individual viewpoint but ignore the underlying relationship between different viewpoints. To address this problem, we propose a novel approach, called textit{Viewpoint-Aware Loss with Angular Regularization }(textbf{VA-reID}). Instead of one subspace for each viewpoint, our method projects the feature from different viewpoints into a unified hypersphere and effectively models the feature distribution on both the identity-level and the viewpoint-level. In addition, rather than modeling different viewpoints as hard labels used for conventional viewpoint classification, we introduce viewpoint-aware adaptive label smoothing regularization (VALSR) that assigns the adaptive soft label to feature representation. VALSR can effectively solve the ambiguity of the viewpoint cluster label assignment. Extensive experiments on the Market1501 and DukeMTMC-reID datasets demonstrated that our method outperforms the state-of-the-art supervised Re-ID methods.
Previous works on vehicle Re-ID mainly focus on extracting global features and learning distance metrics. Because some vehicles commonly share same model and maker, it is hard to distinguish them based on their global appearances. Compared with the g lobal appearance, local regions such as decorations and inspection stickers attached to the windshield, may be more distinctive for vehicle Re-ID. To embed the detailed visual cues in those local regions, we propose a Region-Aware deep Model (RAM). Specifically, in addition to extracting global features, RAM also extracts features from a series of local regions. As each local region conveys more distinctive visual cues, RAM encourages the deep model to learn discriminative features. We also introduce a novel learning algorithm to jointly use vehicle IDs, types/models, and colors to train the RAM. This strategy fuses more cues for training and results in more discriminative global and regional features. We evaluate our methods on two large-scale vehicle Re-ID datasets, i.e., VeRi and VehicleID. Experimental results show our methods achieve promising performance in comparison with recent works.
Vehicle re-identification (reID) plays an important role in the automatic analysis of the increasing urban surveillance videos, which has become a hot topic in recent years. However, it poses the critical but challenging problem that is caused by var ious viewpoints of vehicles, diversified illuminations and complicated environments. Till now, most existing vehicle reID approaches focus on learning metrics or ensemble to derive better representation, which are only take identity labels of vehicle into consideration. However, the attributes of vehicle that contain detailed descriptions are beneficial for training reID model. Hence, this paper proposes a novel Attribute-Guided Network (AGNet), which could learn global representation with the abundant attribute features in an end-to-end manner. Specially, an attribute-guided module is proposed in AGNet to generate the attribute mask which could inversely guide to select discriminative features for category classification. Besides that, in our proposed AGNet, an attribute-based label smoothing (ALS) loss is presented to better train the reID model, which can strength the distinct ability of vehicle reID model to regularize AGNet model according to the attributes. Comprehensive experimental results clearly demonstrate that our method achieves excellent performance on both VehicleID dataset and VeRi-776 dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا