ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmit Covariance and Waveform Optimization for Non-orthogonal CP-FBMA System

185   0   0.0 ( 0 )
 نشر من قبل Yuhao Qi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Filter bank multiple access (FBMA) without subbands orthogonality has been proposed as a new candidate waveform to better meet the requirements of future wireless communication systems and scenarios. It has the ability to process directly the complex symbols without any fancy preprocessing. Along with the usage of cyclic prefix (CP) and wide-banded subband design, CP-FBMA can further improve the peak-to-average power ratio and bit error rate performance while reducing the length of filters. However, the potential gain of removing the orthogonality constraint on the subband filters in the system has not been fully exploited from the perspective of waveform design, which inspires us to optimize the subband filters for CP-FBMA system to maximizing the achievable rate. Besides, we propose a joint optimization algorithm to optimize both the waveform and the covariance matrices iteratively. Furthermore, the joint optimization algorithm can meet the requirements of filter design in practical applications in which the available spectrum consists of several isolated bandwidth parts. Both general framework and detailed derivation of the algorithms are presented. Simulation results show that the algorithms converge after only a few iterations and can improve the sum rate dramatically while reducing the transmission delay of information symbols.

قيم البحث

اقرأ أيضاً

Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tac kle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAVs trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.
Enhanced mobile broadband (eMBB) and ultrareliable and low-latency communications (URLLC) are two major expected services in the fifth-generation mobile communication systems (5G). Specifically, eMBB applications support extremely high data rate comm unications, while URLLC services aim to provide stringent latency with high reliability communications. Due to their differentiated quality-of-service (QoS) requirements, the spectrum sharing between URLLC and eMBB services becomes a challenging scheduling issue. In this paper, we aim to investigate the URLLC and eMBB coscheduling/coexistence problem under a puncturing technique in multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems. The objective function is formulated to maximize the data rate of eMBB users while satisfying the latency requirements of URLLC users through joint user selection and power allocation scheduling. To solve this problem, we first introduce an eMBB user clustering mechanism to balance the system performance and computational complexity. Thereafter, we decompose the original problem into two subproblems, namely the scheduling problem of user selection and power allocation. We introduce a Gale-Shapley (GS) theory to solve with the user selection problem, and a successive convex approximation (SCA) and a difference of convex (D.C.) programming to deal with the power allocation problem. Finally, an iterative algorithm is utilized to find the global solution with low computational complexity. Numerical results show the effectiveness of the proposed algorithms, and also verify the proposed approach outperforms other baseline methods.
In this work, we explore the potential benefits of deploying unmanned aerial vehicles (UAVs) as aerial base stations (ABSs) with sub-6GHz band and small cells terrestrial base stations (TBSs) with millimeter wave (mmWave) band in a hybrid heterogeneo us networks (HetNets). A flexible non-orthogonal multiple access (NOMA) based user association policy is proposed. By using the tools from stochastic geometry, new analytical expressions for association probability, coverage probability and spectrum efficiency are derived for characterizing the performance of UAV-aided HetNets under the realistic Air-to-Ground (A2G) channels and the Ground-to-Ground (G2G) channels with a LoS ball blockage model. Finally, we provide insights on the proposed hybrid HetNets by numerical results. We confirm that i) the proposed NOMA enabled HetNets is capable of achieving superior performance compared with the OMA enabled ABSs by setting power allocation factors and targeted signal-to-interference-plus-noise ratio (SINR) threshold properly; ii) there is a tradeoff between the association probabilities and the spectrum efficiency in the NOMA enabled ABSs tier; iii) the coverage probability and spectrum efficiency of the NOMA enabled ABSs tier is largely affected by the imperfect successive interference cancellation (ipSIC) coefficient, power allocation factors and SINR threshold; iv) compared with only sub-6GHz ABSs, mmWave enabled TBSs are capable of enhancing the spectrum efficiency of the HetNets when the mmWave line-of-sight (LoS) link is available.
Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. I n this paper, an IRS-aided secure spatial modulation (SM) is proposed, where the IRS perform passive beamforming and information transfer simultaneously by adjusting the on-off states of the reflecting elements. We formulate an optimization problem to maximize the average secrecy rate (SR) by jointly optimizing the passive beamforming at IRS and the transmit power at transmitter under the consideration that the direct pathes channels from transmitter to receivers are obstructed by obstacles. As the expression of SR is complex, we derive a newly fitting expression (NASR) for the expression of traditional approximate SR (TASR), which has simpler closed-form and more convenient for subsequent optimization. Based on the above two fitting expressions, three beamforming methods, called maximizing NASR via successive convex approximation (Max-NASR-SCA), maximizing NASR via dual ascent (Max-NASR-DA) and maximizing TASR via semi-definite relaxation (Max-TASR-SDR) are proposed to improve the SR performance. Additionally, two transmit power design (TPD) methods are proposed based on the above two approximate SR expressions, called Max-NASR-TPD and Max-TASR-TPD. Simulation results show that the proposed Max-NASR-DA and Max-NASR-SCA IRS beamformers harvest substantial SR performance gains over Max-TASR-SDR. For TPD, the proposed Max-NASR-TPD performs better than Max-TASR-TPD. Particularly, the Max-NASR-TPD has a closed-form solution.
This paper considers the coexistence of Ultra Reliable Low Latency Communications (URLLC) and enhanced Mobile BroadBand (eMBB) services in the uplink of Cloud Radio Access Network (C-RAN) architecture based on the relaying of radio signals over analo g fronthaul links. While Orthogonal Multiple Access (OMA) to the radio resources enables the isolation and the separate design of different 5G services, Non-Orthogonal Multiple Access (NOMA) can enhance the system performance by sharing wireless and fronthaul resources. This paper provides an information-theoretic perspective in the performance of URLLC and eMBB traffic under both OMA and NOMA. The analysis focuses on standard cellular models with additive Gaussian noise links and a finite inter-cell interference span, and it accounts for different decoding strategies such as puncturing, Treating Interference as Noise (TIN) and Successive Interference Cancellation (SIC). Numerical results demonstrate that, for the considered analog fronthauling C-RAN architecture, NOMA achieves higher eMBB rates with respect to OMA, while guaranteeing reliable low-rate URLLC communication with minimal access latency. Moreover, NOMA under SIC is seen to achieve the best performance, while, unlike the case with digital capacity-constrained fronthaul links, TIN always outperforms puncturing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا