ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Trajectory and Transmit Power Optimization for Secure UAV-Enabled Cognitive Radio Networks

144   0   0.0 ( 0 )
 نشر من قبل Fuhui Zhou
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Cognitive radio is a promising technology to improve spectral efficiency. However, the secure performance of a secondary network achieved by using physical layer security techniques is limited by its transmit power and channel fading. In order to tackle this issue, a cognitive unmanned aerial vehicle (UAV) communication network is studied by exploiting the high flexibility of a UAV and the possibility of establishing line-of-sight links. The average secrecy rate of the secondary network is maximized by robustly optimizing the UAVs trajectory and transmit power. Our problem formulation takes into account two practical inaccurate location estimation cases, namely, the worst case and the outage-constrained case. In order to solve those challenging non-convex problems, an iterative algorithm based on $mathcal{S}$-Procedure is proposed for the worst case while an iterative algorithm based on Bernstein-type inequalities is proposed for the outage-constrained case. The proposed algorithms can obtain effective suboptimal solutions of the corresponding problems. Our simulation results demonstrate that the algorithm under the outage-constrained case can achieve a higher average secrecy rate with a low computational complexity compared to that of the algorithm under the worst case. Moreover, the proposed schemes can improve the secure communication performance significantly compared to other benchmark schemes.

قيم البحث

اقرأ أيضاً

In this paper, we consider a single-cell multi-user orthogonal frequency division multiple access (OFDMA) network with one unmanned aerial vehicle (UAV), which works as an amplify-and-forward relay to improve the quality-of-service (QoS) of the user equipments (UEs) in the cell edge. Aiming to improve the throughput while guaranteeing the user fairness, we jointly optimize the communication mode, subchannel allocation, power allocation, and UAV trajectory, which is an NP-hard problem. To design the UAV trajectory and resource allocation efficiently, we first decompose the problem into three subproblems, i.e., mode selection and subchannel allocation, trajectory optimization, and power allocation, and then solve these subproblems iteratively. Simulation results show that the proposed algorithm outperforms the random algorithm and the cellular scheme.
Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. I n this paper, an IRS-aided secure spatial modulation (SM) is proposed, where the IRS perform passive beamforming and information transfer simultaneously by adjusting the on-off states of the reflecting elements. We formulate an optimization problem to maximize the average secrecy rate (SR) by jointly optimizing the passive beamforming at IRS and the transmit power at transmitter under the consideration that the direct pathes channels from transmitter to receivers are obstructed by obstacles. As the expression of SR is complex, we derive a newly fitting expression (NASR) for the expression of traditional approximate SR (TASR), which has simpler closed-form and more convenient for subsequent optimization. Based on the above two fitting expressions, three beamforming methods, called maximizing NASR via successive convex approximation (Max-NASR-SCA), maximizing NASR via dual ascent (Max-NASR-DA) and maximizing TASR via semi-definite relaxation (Max-TASR-SDR) are proposed to improve the SR performance. Additionally, two transmit power design (TPD) methods are proposed based on the above two approximate SR expressions, called Max-NASR-TPD and Max-TASR-TPD. Simulation results show that the proposed Max-NASR-DA and Max-NASR-SCA IRS beamformers harvest substantial SR performance gains over Max-TASR-SDR. For TPD, the proposed Max-NASR-TPD performs better than Max-TASR-TPD. Particularly, the Max-NASR-TPD has a closed-form solution.
109 - Yao Tang , Man Hon Cheung , 2019
Unmanned aerial vehicles (UAVs) can enhance the performance of cellular networks, due to their high mobility and efficient deployment. In this paper, we present a first study on how the user mobility affects the UAVs trajectories of a multiple-UAV as sisted wireless communication system. Specifically, we consider the UAVs are deployed as aerial base stations to serve ground users who move between different regions. We maximize the throughput of ground users in the downlink communication by optimizing the UAVs trajectories, while taking into account the impact of the user mobility, propulsion energy consumption, and UAVs mutual interference. We formulate the problem as a route selection problem in an acyclic directed graph. Each vertex represents a task associated with a reward on the average user throughput in a region-time point, while each edge is associated with a cost on the energy propulsion consumption during flying and hovering. For the centralized trajectory design, we first propose the shortest path scheme that determines the optimal trajectory for the single UAV case. We also propose the centralized route selection (CRS) scheme to systematically compute the optimal trajectories for the more general multiple-UAV case. Due to the NP-hardness of the centralized problem, we consider the distributed trajectory design that each UAV selects its trajectory autonomously and propose the distributed route selection (DRS) scheme, which will converge to a pure strategy Nash equilibrium within a finite number of iterations.
Integrating the unmanned aerial vehicles (UAVs) into the cellular network is envisioned to be a promising technology to significantly enhance the communication performance of both UAVs and existing terrestrial users. In this paper, we first provide a n overview on the two main paradigms in cellular UAV communications, i.e., cellular-enabled UAV communication with UAVs as new aerial users served by the ground base stations (GBSs), and UAV-assisted cellular communication with UAVs as new aerial communication platforms serving the terrestrial users. Then, we focus on the former paradigm and study a new UAV trajectory design problem subject to practical communication connectivity constraints with the GBSs. Specifically, we consider a cellular-connected UAV in the mission of flying from an initial location to a final location, during which it needs to maintain reliable communication with the cellular network by associating with one GBS at each time instant. We aim to minimize the UAVs mission completion time by optimizing its trajectory, subject to a quality-of-connectivity constraint of the GBS-UAV link specified by a minimum receive signal-to-noise ratio target. To tackle this challenging non-convex problem, we first propose a graph connectivity based method to verify its feasibility. Next, by examining the GBS-UAV association sequence over time, we obtain useful structural results on the optimal UAV trajectory, based on which two efficient methods are proposed to find high-quality approximate trajectory solutions by leveraging graph theory and convex optimization techniques. The proposed methods are analytically shown to be capable of achieving a flexible trade-off between complexity and performance, and yielding a solution that is arbitrarily close to the optimal solution in polynomial time. Finally, we make concluding remarks and point out some promising directions for future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا