ترغب بنشر مسار تعليمي؟ اضغط هنا

Axion Monodromy Inflation, Trapping Mechanisms and the Swampland

124   0   0.0 ( 0 )
 نشر من قبل Robert Brandenberger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the effects of particle production on the evolution of the inflaton field in an axion monodromy model with the goal of discovering in which situations the resulting dynamics will be consistent with the {it swampland constraints}. In the presence of a modulated potential the evolving background field (solution of the inflaton homogeneous in space) induces the production of long wavelength inflaton fluctuation modes. However, this either has a negligible effect on the inflaton dynamics (if the field spacing between local minima of the modulated potential is large), or else it traps the inflaton in a local minimum and leads to a graceful exit problem. On the other hand, the production of moduli fields at enhanced symmetry points can lead to a realization of {it trapped inflation} consistent with the swampland constraints, as long as the coupling between the inflaton and the moduli fields is sufficiently large.

قيم البحث

اقرأ أيضاً

182 - Marco Scalisi 2019
We study the implications on inflation of an infinite tower of higher-spin states with masses falling exponentially at large field distances, as dictated by the Swampland Distance Conjecture. We show that the Higuchi lower bound on the mass of the to wer automatically translates into an upper bound on the inflaton excursion. Strikingly, the mere existence of all spins in the tower forbids any scalar displacement whatsoever, at arbitrarily small Hubble scales, and it turns out therefore incompatible with inflation. A certain field excursion is allowed only if the tower has a cut-off in spin. Finally, we show that this issue is circumvented in the case of a tower of string excitations precisely because of the existence of such a cut-off, which decreases fast enough in field space.
94 - Amjad Ashoorioon 2018
The difficulty of building metastable vacua in string theory has led some to conjecture that, in the string theory landscape, potentials satisfy $left| abla V/Vright|geq csim mathcal{O}(1)$. This condition, which is supported by different explicit co nstructions, suggests that the EFTs which lead to metastable de-Sitter vacua belong to what is dubbed as swampland. This condition endangers the paradigm of single field inflation. In this paper, we show how scalar excited initial states cannot rescue single field inflation from the swampland, as they produce large local scalar non-gaussianity, which is in conflict with the Planck upper bound. Instead, we demonstrate that one can salvage single field inflation using excited initial states for tensor perturbations, which in this case produce only large flattened non-gaussianity in the tensor bispectrum. We comment on the possible methods one can prepare such excited initial conditions for the tensor perturbations.
The de Sitter constraint on the space of effective scalar field theories consistent with superstring theory provides a lower bound on the slope of the potential of a scalar field which dominates the evolution of the Universe, e.g., a hypothetical inf laton field. Whereas models of single scalar field inflation with a canonically normalized field do not obey this constraint, it has been claimed recently in the literature that models of warm inflation can be made compatible with it in the case of large dissipation. The de Sitter constraint is known to be derived from entropy considerations. Since warm inflation necessary involves entropy production, it becomes necessary to determine how this entropy production will affect the constraints imposed by the swampland conditions. Here, we generalize these entropy considerations to the case of warm inflation and show that the condition on the slope of the potential remains essentially unchanged and is, hence, robust even in the warm inflation dynamics. We are then able to conclude that models of warm inflation indeed can be made consistent with the swampland criteria.
We analyze the quantum-corrected moduli space of D7-brane position moduli with special emphasis on inflationary model building. D7-brane deformation moduli are key players in two recently proposed inflationary scenarios: The first, D7-brane chaotic i nflation, is a variant of axion monodromy inflation which allows for an effective 4d supergravity description. The second, fluxbrane inflation, is a stringy version of D-term hybrid inflation. Both proposals rely on the fact that D7-brane coordinates enjoy a shift-symmetric Kahler potential at large complex structure of the Calabi-Yau threefold, making them naturally lighter than other fields. This shift symmetry is inherited from the mirror-dual Type IIA Wilson line on a D6-brane at large volume. The inflaton mass can be provided by a tree-level term in the flux superpotential. It induces a monodromy and, if tuned to a sufficiently small value, can give rise to a large-field model of inflation. Alternatively, by a sensible flux choice one can completely avoid a tree-level mass term, in which case the inflaton potential is induced via loop corrections. The positive vacuum energy can then be provided by a D-term, leading to a small-field model of hybrid natural inflation. In the present paper, we continue to develop a detailed understanding of the D7-brane moduli space focusing among others on shift-symmetry-preserving flux choices, flux-induced superpotential in Type IIB/F-theory language, and loop corrections. While the inflationary applications represent our main physics motivation, we expect that some of our findings will be useful for other phenomenological issues involving 7-branes in Type IIB/F-theory constructions.
We study the multifield dynamics of axion models nonminimally coupled to gravity. As usual, we consider a canonical $U(1)$ symmetry-breaking model in which the axion is the phase of a complex scalar field. If the complex scalar field has a nonminimal coupling to gravity, then the (oft-forgotten) radial component can drive a phase of inflation prior to an inflationary phase driven by the axion field. In this setup, the mass of the axion field is dependent on the radial field because of the nonminimal coupling, and the axion remains extremely light during the phase of radial inflation. As the radial field approaches the minimum of its potential, there is a transition to natural inflation in the angular direction. In the language of multifield inflation, this system exhibits ultra-light isocurvature perturbations, which are converted to adiabatic perturbations at a fast turn, namely the onset of axion inflation. For models wherein the CMB pivot scale exited the horizon during radial inflation, this acts to suppresses the tensor-to-scalar ratio $r$, without generating CMB non-Gaussianity or observable isocurvature perturbations. Finally, we note that the interaction strength between axion and gauge fields is suppressed during the radial phase relative to its value during the axion inflation phase by several orders of magnitude. This decouples the constraints on the inflationary production of gauge fields (e.g., from primordial black holes) from the constraints on their production during (p)reheating.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا