ﻻ يوجد ملخص باللغة العربية
The de Sitter constraint on the space of effective scalar field theories consistent with superstring theory provides a lower bound on the slope of the potential of a scalar field which dominates the evolution of the Universe, e.g., a hypothetical inflaton field. Whereas models of single scalar field inflation with a canonically normalized field do not obey this constraint, it has been claimed recently in the literature that models of warm inflation can be made compatible with it in the case of large dissipation. The de Sitter constraint is known to be derived from entropy considerations. Since warm inflation necessary involves entropy production, it becomes necessary to determine how this entropy production will affect the constraints imposed by the swampland conditions. Here, we generalize these entropy considerations to the case of warm inflation and show that the condition on the slope of the potential remains essentially unchanged and is, hence, robust even in the warm inflation dynamics. We are then able to conclude that models of warm inflation indeed can be made consistent with the swampland criteria.
Motivated by the coincidence of scrambling time in de Sitter and maximum lifetime given by the $textit{Trans-Planckian Censorship Conjecture}$ (TCC), we study the relation between the de Sitter complementarity and the Swampland conditions. We study t
Among Swampland conditions, the distance conjecture characterizes the geometry of scalar fields and the de Sitter conjecture constrains allowed potentials on it. We point out a connection between the distance conjecture and a refined version of the d
The recently introduced swampland criterion for de Sitter (arXiv:1806.08362) can be viewed as a (hierarchically large) bound on the smallness of the slow roll parameter $epsilon_V$. This leads us to consider the other slow roll parameter $eta_V$ more
Quantum consistency suggests that any de Sitter patch that lasts a number of Hubble times that exceeds its Gibbons-Hawking entropy divided by the number of light particle species suffers an effect of quantum breaking. Inclusion of other interactions
In the setup of ghost condensation model the generalized second law of black hole thermodynamics can be respected under a radiatively stable assumption that couplings between the field responsible for ghost condensate and matter fields such as those