ترغب بنشر مسار تعليمي؟ اضغط هنا

Breakdown of universality in three-dimensional Dirac semimetals with random impurities

339   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Pedro dos Santos Pires
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dirac-Weyl semimetals are unique three-dimensional (3D) phases of matter with gapless electrons and novel electrodynamic properties believed to be robust against weak perturbations. Here, we unveil the crucial influence of the disorder statistics and impurity diversity in the stability of incompressible electrons in 3D semimetals. Focusing on the critical role played by rare impurity configurations, we show that the abundance of low-energy resonances in the presence of diluted random potential wells endows rare localized zero-energy modes with statistical significance, thus lifting the nodal density of states. The strong nonperturbative effect here reported converts the 3D Dirac-Weyl semimetal into a compressible metal even at the lowest impurity densities. Our analytical results are validated by high-resolution real-space simulations in record-large 3D lattices with up to 536 000 000 orbitals.



قيم البحث

اقرأ أيضاً

130 - Keith Slevin , Tomi Ohtsuki 2013
We report a careful finite size scaling study of the metal insulator transition in Andersons model of localisation. We focus on the estimation of the critical exponent $ u$ that describes the divergence of the localisation length. We verify the unive rsality of this critical exponent for three different distributions of the random potential: box, normal and Cauchy. Our results for the critical exponent are consistent with the measured values obtained in experiments on the dynamical localisation transition in the quantum kicked rotor realised in a cold atomic gas.
The band-touching points of stable, three-dimensional, Kramers-degenerate, Dirac semimetals are singularities of a five-component, unit vector field and non-Abelian, $SO(5)$-Berrys connections, whose topological classification is an important, open p roblem. We solve this problem by performing second homotopy classification of Berrys connections. Using Abelian projected connections, the generic planes, orthogonal to the direction of nodal separation, and lying between two Dirac points are shown to be higher-order topological insulators, which support quantized, chromo-magnetic flux or relative Chern number, and gapped, edge states. The Dirac points are identified as a pair of unit-strength, $SO(5)$- monopole and anti-monopole, where the relative Chern number jumps by $pm 1$. Using these bulk invariants, we determine the topological universality class of different types of Dirac semimetals. We also describe a universal recipe for computing quantized, non-Abelian flux for Dirac materials from the windings of spectra of planar Wilson loops, displaying $SO(5)$-gauge invariance. With non-perturbative, analytical solutions of surface-states, we show the absence of helical Fermi arcs, and predict the fermiology and the spin-orbital textures. We also discuss the similarities and important topological distinction between the surface-states Hamiltonian and the generator of Polyakov loop of Berrys connections.
We theoretically study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between magnetic impurities in both Dirac and Weyl semimetals (SMs). We find that the internode process, as well as the unique three-dimensional spin-momentum locking, has si gnificant influences on the RKKY interaction, resulting in both a Heisenberg and an Ising term, and an additional Dzyaloshinsky-Moriya term if the inversion symmetry is absent. These interactions can lead to rich spin textures and possible ferromagnetism in Dirac and time-reversal symmetry-invariant Weyl SMs. The effect of anisotropic Dirac and Weyl nodes on the RKKY interaction is also discussed. Our results provide an alternative scheme to engineer topological SMs and shed new light on the application of Dirac and Weyl SMs in spintronics.
294 - A. Malakis , N.G. Fytas 2008
The three-dimensional bimodal random-field Ising model is investigated using the N-fold version of the Wang-Landau algorithm. The essential energy subspaces are determined by the recently developed critical minimum energy subspace technique, and two implementations of this scheme are utilized. The random fields are obtained from a bimodal discrete $(pmDelta)$ distribution, and we study the model for various values of the disorder strength $Delta$, $Delta=0.5, 1, 1.5$ and 2, on cubic lattices with linear sizes $L=4-24$. We extract information for the probability distributions of the specific heat peaks over samples of random fields. This permits us to obtain the phase diagram and present the finite-size behavior of the specific heat. The question of saturation of the specific heat is re-examined and it is shown that the open problem of universality for the random-field Ising model is strongly influenced by the lack of self-averaging of the model. This property appears to be substantially depended on the disorder strength.
We consider chiral electrons moving along the 1D helical edge of a 2D topological insulator and interacting with a disordered chain of Kondo impurities. Assuming the electron-spin couplings of random anisotropies, we map this system to the problem of the pinning of the charge density wave by the disordered potential. This mapping proves that arbitrary weak anisotropic disorder in coupling of chiral electrons with spin impurities leads to the Anderson localization of the edge states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا